Spark中:
1、根据算子是否是行动(Action)算子,来划分Job;
2、根据算子运算是否需要洗牌(Shuffle),来划分Stage;
3、根据RDD的分区数,来划分Task。
下面以例子来进行说明。
首先启动一个Spark的Application:
pyspark --queue gld
Driver的核数和内存,Executor的实例数、核数和内存都是默认值,即–driver-cores=1, --driver-memory=1G, --num-executors=2, --executor-cores=1, --executor-memory=1G。
例子1
初始化RDD并进行运算:
rdd = sc.parallelize([1,3,2,5,7,9,3,5,4], 3)
rdd.distinct().collect() # [9, 3, 1, 4, 7, 5, 2]
rdd.filter(lambda x:x % 2!=0).collect() # [1, 3, 5, 7, 9, 3, 5]
问题:这段代码执行后,有多少个Job、Stage和Task?
第一行代码初始化了一个3个分区的RDD;
第二行代码distinct转换算子之后接collect行动算子;
第三行代码filter转换算子之后接collect行动算子。
总共有2个行动算子,所以总共有2个Job:
一个Job里,有distinct和collect,其中distinct有Shuffle操作,算一个Stage,collect也要算一个Stage,所以有2个Stage,两个Stage处理的RDD都有3个分区,所以有2×3=6个Task;
另一个Job里,有filter和collect,filter没有Shuffle操作,所以不算一个Stage,只有collect算一个Stage,所以有1个Stage,这个Stage处理的RDD有3个分区,所以有3个Task;
所以,这段代码执行后,共有2个Job,3个Stage,9个Task。
下面通过Spark Web UI来看:
Jobs:
Stages:
9个Task具体在哪个Executor里执行的呢?
例子2
x = sc.parallelize([("a", 1), ("b", 4)])
y = sc.parallelize([("a", 2), ("a", 3), ("c", 5)], 3)
r = x.join(y)
r.collect() # [('a', (1, 3)), ('a', (1, 2))]
只有一个collect行动算子,所以只有1个Job。这个Job里,join是Shuffle操作,这里划分了一个Stage,collect也划分了一个Stage,所以共有2个Stage。
Stage 0:x.join(y),输入的x有2个分区,y有3个分区,总共5个分区,所以这里有5个Task。
Stage 1:collect() ,输入的r有5个分区,所以这里也有5个Task。
所以,总共有1个Job,2个Stage,10个Task。