Spark进阶高频面试题

1、简述SparkSQL中RDD、DataFrame、DataSet三者区别与联系

1. RDD

优点:

  • 编译时类型安全
  • 编译时就能检查出类型错误
  • 面向对象的编程风格
  • 直接通过类名点的方式来操作数据

缺点:

  • 序列化和反序列化的性能开销
  • 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化。
  • GC的性能开销 ,频繁的创建和销毁对象, 势必会增加GC

2. DataFrame

DataFrame引入了schema和off-heap

schema : RDD每一行的数据, 结构都是一样的,这个结构就存储在schema中。 Spark通过schema就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了。

3. DataSet

DataSet结合了RDD和DataFrame的优点,并带来的一个新的概念Encoder。

当序列化数据时,Encoder产生字节码与off-heap进行交互,能够达到按需访问数据的效果,而不用反序列化整个对象。Spark还没有提供自定义Encoder的API,但是未来会加入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wespten

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值