pytorch学习记录:torch.div()

pytorch doc介绍

在这里插入图片描述
简单来说就是一个除法运算,被除数是一个tensor,除数可以是一个数字,也可以是一个tensor。

import torch
x = torch.tensor([ 0.3810,  1.2774, -0.2972, -0.3719,  0.4637])
torch.div(x, 0.5)
# tensor([ 0.7620,  2.5548, -0.5944, -0.7438,  0.9274])

a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
                  [ 0.1815, -1.0111,  0.9805, -1.5923],
                  [ 0.1062,  1.4581,  0.7759, -1.2344],
                  [-0.1830, -0.0313,  1.1908, -1.4757]])
b = torch.tensor([ 0.8032,  0.2930, -0.8113, -0.2308])
torch.div(a, b)
# tensor([[-0.4620, -6.6051,  0.5676,  1.2639],
#         [ 0.2260, -3.4509, -1.2086,  6.8990],
#         [ 0.1322,  4.9764, -0.9564,  5.3484],
#         [-0.2278, -0.1068, -1.4678,  6.3938]])

torch.div(a, b, rounding_mode='trunc')
# tensor([[-0., -6.,  0.,  1.],
#         [ 0., -3., -1.,  6.],
#         [ 0.,  4., -0.,  5.],
#         [-0., -0., -1.,  6.]])

torch.div(a, b, rounding_mode='floor')
# tensor([[-1., -7.,  0.,  1.],
#         [ 0., -4., -2.,  6.],
#         [ 0.,  4., -1.,  5.],
#         [-1., -1., -2.,  6.]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值