图像语义分割 pytorch复现U2Net图像分割网络详解

在这里插入图片描述
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

1、U2Net网络模型结构

在这里插入图片描述
网络的主体类似于U-Net的网络结构,在大的U-Net中,每一个小的block都是一个小型的类似于U-Net的结构,因此作者取名U2Net
仔细观察,可以将网络中的block分成两类:
第一类:En_1 ~ En_4 与 De_1 ~ De_4这8个block采用的block其实是一样的,只不过模块的深度不同。

第二类:En_5、En_6、De_5

  • 在整个U2Net网络中,在Encoder阶段,每通过一个block都会进行一次下采样操作(下采样2倍,maxpool)
  • 在Decoder阶段,在每个block之间,都会进行一次上采样(2倍,bilinear)

2、block模块结构解析

在 En_1 与 De_1 模块中,采用的 block 是RSU-7;
En_2 与 De_2采用的 block 是RSU-6(RSU-6相对于RSU-7 就是少了一个下采样卷积以及上采样卷积的部分,RSU-6 block只会下采样16倍,RSU-7 block下采样的32倍);
En_3 与 De_3采用的 block 是RSU-5
En_4 与 De_4采用的 block 是RSU-4
En_5、En_6、De_5采用的block是RSU-4F
(使用RSU-4F的原因:因为数据经过En_1 ~ En4 下采样处理后对应特征图的高与宽就已经相对比较小了,如果再继续下采样就会丢失很多上下文信息,作者为了保留上下文信息,就对En_5、En_6、De_5不再进行下采样了而是在RSU-4F的模块中,将下采样、上采样结构换成了膨胀卷积)

RSU-7模块

在这里插入图片描述详细结构图解
在这里插入图片描述

RSU-4F

在这里插入图片描述

saliency map fusion module

saliency map fusion module模块是将每个阶段的特征图进行融合,得到最终的预测概率图,即下图中,红色框标注的模块
在这里插入图片描述
其会收集De_1、De_2、De_3、De_4、De_5、En_6模块的输出,将这些输出分别通过一个3x3的卷积层(这些卷积层的kerner的个数都是为1)输出的featuremap的channel是为1的,在经过双线性插值算法将得到的特征图还原回输入图像的大小;再将得到的6个特征图进行concant拼接;在经过一个1x1的卷积层以及sigmoid激活函数,最终得到融合之后的预测概率图。

U2Net网络结构详细参数配置

在这里插入图片描述
u2net_full大小为176.3M、u2net_lite大小为4.7M

RSU模块代码实现

在这里插入图片描述

class RSU(nn.Module):
    def __init__(self, height: int, in_ch: int, mid_ch: int, out_ch: int):
        super().__init__()

        assert height >= 2
        self.conv_in = ConvBNReLU(in_ch, out_ch)

        encode_list = [DownConvBNReLU(out_ch, mid_ch, flag=False)]
        decode_list = [UpConvBNReLU(mid_ch * 2, mid_ch, flag=False)]
        for i in range(height - 2):
            encode_list.append(DownConvBNReLU(mid_ch, mid_ch))
            decode_list.append(UpConvBNReLU(mid_ch * 2, mid_ch if i < height - 3 else out_ch))

        encode_list.append(ConvBNReLU(mid_ch, mid_ch, dilation=2))
        self.encode_modules = nn.ModuleList(encode_list)
        self.decode_modules = nn.ModuleList(decode_list)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_in = self.conv_in(x)

        x = x_in
        encode_outputs = []
        for m in self.encode_modules:
            x = m(x)
            encode_outputs.append(x)

        x = encode_outputs.pop()
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = m(x, x2)

        return x + x_in

RSU4F模块代码实现

在这里插入图片描述

class RSU4F(nn.Module):
    def __init__(self, in_ch: int, mid_ch: int, out_ch: int):
        super().__init__()
        self.conv_in = ConvBNReLU(in_ch, out_ch)
        self.encode_modules = nn.ModuleList([ConvBNReLU(out_ch, mid_ch),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=2),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=4),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=8)])

        self.decode_modules = nn.ModuleList([ConvBNReLU(mid_ch * 2, mid_ch, dilation=4),
                                             ConvBNReLU(mid_ch * 2, mid_ch, dilation=2),
                                             ConvBNReLU(mid_ch * 2, out_ch)])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_in = self.conv_in(x)

        x = x_in
        encode_outputs = []
        for m in self.encode_modules:
            x = m(x)
            encode_outputs.append(x)

        x = encode_outputs.pop()
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = m(torch.cat([x, x2], dim=1))

        return x + x_in

u2net_full与u2net_lite模型配置函数

def u2net_full(out_ch: int = 1):
    cfg = {
        # height, in_ch, mid_ch, out_ch, RSU4F, side     side:表示是否要收集当前block的输出
        "encode": [[7, 3, 32, 64, False, False],      # En1
                   [6, 64, 32, 128, False, False],    # En2
                   [5, 128, 64, 256, False, False],   # En3
                   [4, 256, 128, 512, False, False],  # En4
                   [4, 512, 256, 512, True, False],   # En5
                   [4, 512, 256, 512, True, True]],   # En6
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "decode": [[4, 1024, 256, 512, True, True],   # De5
                   [4, 1024, 128, 256, False, True],  # De4
                   [5, 512, 64, 128, False, True],    # De3
                   [6, 256, 32, 64, False, True],     # De2
                   [7, 128, 16, 64, False, True]]     # De1
    }

    return U2Net(cfg, out_ch)


def u2net_lite(out_ch: int = 1):
    cfg = {
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "encode": [[7, 3, 16, 64, False, False],  # En1
                   [6, 64, 16, 64, False, False],  # En2
                   [5, 64, 16, 64, False, False],  # En3
                   [4, 64, 16, 64, False, False],  # En4
                   [4, 64, 16, 64, True, False],  # En5
                   [4, 64, 16, 64, True, True]],  # En6
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "decode": [[4, 128, 16, 64, True, True],  # De5
                   [4, 128, 16, 64, False, True],  # De4
                   [5, 128, 16, 64, False, True],  # De3
                   [6, 128, 16, 64, False, True],  # De2
                   [7, 128, 16, 64, False, True]]  # De1
    }

U2Net网络整体定义类

class U2Net(nn.Module):
    def __init__(self, cfg: dict, out_ch: int = 1):
        super().__init__()
        assert "encode" in cfg
        assert "decode" in cfg
        self.encode_num = len(cfg["encode"])

        encode_list = []
        side_list = []
        for c in cfg["encode"]:
            # c: [height, in_ch, mid_ch, out_ch, RSU4F, side]
            assert len(c) == 6
            encode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))     # 判断当前是构建RSU模块,还是构建RSU4F模块

            if c[5] is True:
                side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))
        self.encode_modules = nn.ModuleList(encode_list)

        decode_list = []
        for c in cfg["decode"]:
            # c: [height, in_ch, mid_ch, out_ch, RSU4F, side]
            assert len(c) == 6
            decode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))

            if c[5] is True:
                side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))    # 收集当前block的输出
        self.decode_modules = nn.ModuleList(decode_list)
        self.side_modules = nn.ModuleList(side_list)
        self.out_conv = nn.Conv2d(self.encode_num * out_ch, out_ch, kernel_size=1)   # 构建一个1x1的卷积层,去融合来自不同尺度的信息

    def forward(self, x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
        _, _, h, w = x.shape

        # collect encode outputs
        encode_outputs = []
        for i, m in enumerate(self.encode_modules):
            x = m(x)
            encode_outputs.append(x)
            if i != self.encode_num - 1:  # 此处需要进行判断,因为在没通过一个encoder模块后,都需要进行下采样的,但最后一个模块后,是不需要下采样的
                x = F.max_pool2d(x, kernel_size=2, stride=2, ceil_mode=True)

        # collect decode outputs
        x = encode_outputs.pop()
        decode_outputs = [x]
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = F.interpolate(x, size=x2.shape[2:], mode='bilinear', align_corners=False)
            x = m(torch.concat([x, x2], dim=1))
            decode_outputs.insert(0, x)

        # collect side outputs
        side_outputs = []
        for m in self.side_modules:
            x = decode_outputs.pop()
            x = F.interpolate(m(x), size=[h, w], mode='bilinear', align_corners=False)
            side_outputs.insert(0, x)

        x = self.out_conv(torch.concat(side_outputs, dim=1))

        if self.training:
            # do not use torch.sigmoid for amp safe
            return [x] + side_outputs     # 用于计算损失
        else:
            return torch.sigmoid(x)

损失函数计算

在这里插入图片描述
如上图所示,红色框部分为每个分量与真实标签的交叉熵损失函数求和;黄色框标部分为将各个分量经双线性插值恢复至原始尺寸、进行concant处理、经过1x1的卷积核与sigmoid处理后的结果与真实标签的交叉熵损失函数。
损失函数代码实现:

import math
import torch
from torch.nn import functional as F
import train_utils.distributed_utils as utils


def criterion(inputs, target):
    losses = [F.binary_cross_entropy_with_logits(inputs[i], target) for i in range(len(inputs))]
    total_loss = sum(losses)

    return total_loss

评价指标

在这里插入图片描述
其中F-measure是在0~1之间的,数值越大,代表的网络分割效果越好;
MAE是Mean Absolute Error的缩写,其值是在0~1之间的,越趋近于0,代表网络性能越好。

数据集

在这里插入图片描述
在这里插入图片描述

pytorch训练U2Net图像分割模型

项目目录结构:

├── src: 搭建网络相关代码
├── train_utils: 训练以及验证相关代码
├── my_dataset.py: 自定义数据集读取相关代码
├── predict.py: 简易的预测代码
├── train.py: 单GPU或CPU训练代码
├── train_multi_GPU.py: 多GPU并行训练代码
├── validation.py: 单独验证模型相关代码
├── transforms.py: 数据预处理相关代码
└── requirements.txt: 项目依赖

项目目录:
在这里插入图片描述
项目中u2net_full大小为176.3M、u2net_lite大小为4.7M,演示过程中,训练的为u2net_lite版本
多GPU训练指令:
pytorch版本为1.7

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env train_multi_GPU.py --data-path ./data_root

在这里插入图片描述
训练过程损失函数,评估指标变化

[epoch: 0] train_loss: 3.0948 lr: 0.000500 MAE: 0.263 maxF1: 0.539 
[epoch: 10] train_loss: 1.1108 lr: 0.000998 MAE: 0.111 maxF1: 0.729 
[epoch: 20] train_loss: 0.8480 lr: 0.000993 MAE: 0.093 maxF1: 0.764 
[epoch: 30] train_loss: 0.7438 lr: 0.000984 MAE: 0.086 maxF1: 0.776 
[epoch: 40] train_loss: 0.6625 lr: 0.000971 MAE: 0.082 maxF1: 0.790 
[epoch: 50] train_loss: 0.5897 lr: 0.000954 MAE: 0.077 maxF1: 0.801 
[epoch: 60] train_loss: 0.5273 lr: 0.000934 MAE: 0.071 maxF1: 0.808 
[epoch: 70] train_loss: 0.5139 lr: 0.000911 MAE: 0.079 maxF1: 0.787 
[epoch: 80] train_loss: 0.4775 lr: 0.000885 MAE: 0.073 maxF1: 0.801 
[epoch: 90] train_loss: 0.4601 lr: 0.000855 MAE: 0.069 maxF1: 0.809 
[epoch: 100] train_loss: 0.4529 lr: 0.000823 MAE: 0.065 maxF1: 0.805 
[epoch: 110] train_loss: 0.4441 lr: 0.000788 MAE: 0.068 maxF1: 0.810 
[epoch: 120] train_loss: 0.3991 lr: 0.000751 MAE: 0.066 maxF1: 0.806 
[epoch: 130] train_loss: 0.3903 lr: 0.000712 MAE: 0.065 maxF1: 0.824 
[epoch: 140] train_loss: 0.3770 lr: 0.000672 MAE: 0.060 maxF1: 0.823 
[epoch: 150] train_loss: 0.3666 lr: 0.000630 MAE: 0.064 maxF1: 0.825 
[epoch: 160] train_loss: 0.3530 lr: 0.000587 MAE: 0.060 maxF1: 0.829 
[epoch: 170] train_loss: 0.3557 lr: 0.000544 MAE: 0.063 maxF1: 0.820 
[epoch: 180] train_loss: 0.3430 lr: 0.000500 MAE: 0.065 maxF1: 0.816 
[epoch: 190] train_loss: 0.3366 lr: 0.000456 MAE: 0.059 maxF1: 0.832 
[epoch: 200] train_loss: 0.3285 lr: 0.000413 MAE: 0.062 maxF1: 0.822 
[epoch: 210] train_loss: 0.3197 lr: 0.000370 MAE: 0.058 maxF1: 0.829 
[epoch: 220] train_loss: 0.3093 lr: 0.000328 MAE: 0.058 maxF1: 0.828 
[epoch: 230] train_loss: 0.3071 lr: 0.000288 MAE: 0.058 maxF1: 0.827 
[epoch: 240] train_loss: 0.2983 lr: 0.000249 MAE: 0.056 maxF1: 0.830 
[epoch: 250] train_loss: 0.2932 lr: 0.000212 MAE: 0.060 maxF1: 0.825 
[epoch: 260] train_loss: 0.2908 lr: 0.000177 MAE: 0.060 maxF1: 0.828 
[epoch: 270] train_loss: 0.2895 lr: 0.000145 MAE: 0.057 maxF1: 0.832 
[epoch: 280] train_loss: 0.2834 lr: 0.000115 MAE: 0.057 maxF1: 0.832 
[epoch: 290] train_loss: 0.2762 lr: 0.000089 MAE: 0.056 maxF1: 0.833 
[epoch: 300] train_loss: 0.2760 lr: 0.000066 MAE: 0.056 maxF1: 0.832 
[epoch: 310] train_loss: 0.2752 lr: 0.000046 MAE: 0.057 maxF1: 0.832 
[epoch: 320] train_loss: 0.2782 lr: 0.000029 MAE: 0.056 maxF1: 0.834 
[epoch: 330] train_loss: 0.2744 lr: 0.000016 MAE: 0.056 maxF1: 0.832 
[epoch: 340] train_loss: 0.2752 lr: 0.000007 MAE: 0.056 maxF1: 0.832 
[epoch: 350] train_loss: 0.2739 lr: 0.000002 MAE: 0.057 maxF1: 0.831 
[epoch: 359] train_loss: 0.2770 lr: 0.000000 MAE: 0.056 maxF1: 0.833 

模型测试

import os
import time

import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
from torchvision.transforms import transforms

from src import u2net_full,u2net_lite


def time_synchronized():
    torch.cuda.synchronize() if torch.cuda.is_available() else None
    return time.time()


def main():
    weights_path = "./multi_train/model_best.pth"
    img_path = "./test_image.PNG"
    threshold = 0.5

    assert os.path.exists(img_path), f"image file {img_path} dose not exists."

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize(320),
        transforms.Normalize(mean=(0.485, 0.456, 0.406),
                             std=(0.229, 0.224, 0.225))
    ])

    origin_img = cv2.cvtColor(cv2.imread(img_path, flags=cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)

    h, w = origin_img.shape[:2]
    img = data_transform(origin_img)
    img = torch.unsqueeze(img, 0).to(device)  # [C, H, W] -> [1, C, H, W]

    # model = u2net_full()
    model =u2net_lite()
    weights = torch.load(weights_path, map_location='cpu')
    if "model" in weights:
        model.load_state_dict(weights["model"])
    else:
        model.load_state_dict(weights)
    model.to(device)
    model.eval()

    with torch.no_grad():
        # init model
        img_height, img_width = img.shape[-2:]
        init_img = torch.zeros((1, 3, img_height, img_width), device=device)
        model(init_img)

        t_start = time_synchronized()
        pred = model(img)
        t_end = time_synchronized()
        print("inference time: {}".format(t_end - t_start))
        pred = torch.squeeze(pred).to("cpu").numpy()  # [1, 1, H, W] -> [H, W]

        pred = cv2.resize(pred, dsize=(w, h), interpolation=cv2.INTER_LINEAR)
        pred_mask = np.where(pred > threshold, 1, 0)
        origin_img = np.array(origin_img, dtype=np.uint8)
        seg_img = origin_img * pred_mask[..., None]
        plt.imshow(seg_img)
        plt.show()
        cv2.imwrite("pred_result.png", cv2.cvtColor(seg_img.astype(np.uint8), cv2.COLOR_RGB2BGR))


if __name__ == '__main__':
    main()

在这里插入图片描述

训练的为u2net_full版本
训练指标如下:

[epoch: 0] train_loss: 2.7158 lr: 0.000500 MAE: 0.216 maxF1: 0.583 
[epoch: 10] train_loss: 1.0359 lr: 0.000998 MAE: 0.105 maxF1: 0.745 
[epoch: 20] train_loss: 0.7130 lr: 0.000993 MAE: 0.087 maxF1: 0.778 
[epoch: 30] train_loss: 0.5375 lr: 0.000984 MAE: 0.077 maxF1: 0.810 
[epoch: 40] train_loss: 0.4661 lr: 0.000971 MAE: 0.069 maxF1: 0.826 
[epoch: 50] train_loss: 0.4181 lr: 0.000954 MAE: 0.065 maxF1: 0.823 
[epoch: 60] train_loss: 0.3914 lr: 0.000934 MAE: 0.065 maxF1: 0.826 
[epoch: 70] train_loss: 0.3353 lr: 0.000911 MAE: 0.059 maxF1: 0.840 
[epoch: 80] train_loss: 0.2847 lr: 0.000885 MAE: 0.058 maxF1: 0.835 
[epoch: 90] train_loss: 0.2977 lr: 0.000855 MAE: 0.056 maxF1: 0.843 
[epoch: 100] train_loss: 0.2538 lr: 0.000823 MAE: 0.054 maxF1: 0.848 
[epoch: 110] train_loss: 0.2653 lr: 0.000788 MAE: 0.052 maxF1: 0.848 
[epoch: 120] train_loss: 0.2365 lr: 0.000751 MAE: 0.052 maxF1: 0.841 
[epoch: 130] train_loss: 0.2397 lr: 0.000712 MAE: 0.056 maxF1: 0.843 
[epoch: 140] train_loss: 0.2180 lr: 0.000672 MAE: 0.051 maxF1: 0.854 
[epoch: 150] train_loss: 0.2060 lr: 0.000630 MAE: 0.051 maxF1: 0.853 
[epoch: 160] train_loss: 0.2002 lr: 0.000587 MAE: 0.052 maxF1: 0.853 
[epoch: 170] train_loss: 0.1952 lr: 0.000544 MAE: 0.050 maxF1: 0.859 
[epoch: 180] train_loss: 0.1893 lr: 0.000500 MAE: 0.053 maxF1: 0.851 
[epoch: 190] train_loss: 0.1838 lr: 0.000456 MAE: 0.050 maxF1: 0.852 
[epoch: 200] train_loss: 0.1779 lr: 0.000413 MAE: 0.049 maxF1: 0.858 
[epoch: 210] train_loss: 0.1745 lr: 0.000370 MAE: 0.052 maxF1: 0.851 
[epoch: 220] train_loss: 0.1703 lr: 0.000328 MAE: 0.050 maxF1: 0.854 
[epoch: 230] train_loss: 0.1667 lr: 0.000288 MAE: 0.049 maxF1: 0.855 
[epoch: 240] train_loss: 0.1640 lr: 0.000249 MAE: 0.049 maxF1: 0.855 
[epoch: 250] train_loss: 0.1618 lr: 0.000212 MAE: 0.049 maxF1: 0.855 
[epoch: 260] train_loss: 0.1598 lr: 0.000177 MAE: 0.048 maxF1: 0.856 
[epoch: 270] train_loss: 0.1580 lr: 0.000145 MAE: 0.049 maxF1: 0.856 
[epoch: 280] train_loss: 0.1572 lr: 0.000115 MAE: 0.049 maxF1: 0.853 
[epoch: 290] train_loss: 0.1561 lr: 0.000089 MAE: 0.047 maxF1: 0.857 
[epoch: 300] train_loss: 0.1550 lr: 0.000066 MAE: 0.047 maxF1: 0.858 
[epoch: 310] train_loss: 0.1543 lr: 0.000046 MAE: 0.048 maxF1: 0.854 
[epoch: 320] train_loss: 0.1539 lr: 0.000029 MAE: 0.048 maxF1: 0.854 


在这里插入图片描述

  • 4
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 遥感图像语义分割是指将遥感图像中的每个像素点进行分类,确定其对应的地物类别,如建筑、道路、植被等。PyTorch是一种用于构建和训练深度学习模型的开源框架,可以高效地实现遥感图像语义分割。 以下是使用PyTorch实现遥感图像语义分割的简要教程: 1. 数据准备:首先,需要准备用于训练的遥感图像数据集。该数据集应包含遥感图像及对应的标签图像,其中每个像素点都标注了地物类别。可以使用现有的公开数据集,或者通过遥感图像数据集的制作工具对自己的数据进行标注。 2. 数据加载:使用PyTorch中的数据加载器来加载训练数据。可以自定义一个数据加载类,继承PyTorch的Dataset类,实现__getitem__和__len__方法,将遥感图像和对应的标签图像读取并返回。 3. 模型设计:选择适合任务的深度学习模型,如U-Net、DeepLab等。可以使用PyTorch提供的预训练模型作为基础网络,然后根据具体任务进行修改。在模型中添加适当的卷积、池化和上采样层,并加入跳跃连接等技巧以提高模型性能。 4. 损失函数定义:在语义分割中,常使用交叉熵损失函数来度量模型输出与标签之间的差异。可以使用PyTorch提供的交叉熵损失函数或自定义损失函数。 5. 模型训练:使用定义好的数据加载器、模型和损失函数进行训练。通过定义优化器和学习率,使用PyTorch自带的训练函数进行模型的训练。可以设置合适的批量大小、学习率衰减等超参数,根据训练集和验证集的损失和准确率进行调整。 6. 模型评估:训练完成后,使用测试集对模型进行评估,计算准确率、召回率、F1值等指标,评估模型在遥感图像语义分割任务上的性能。 以上是一个简要的遥感图像语义分割PyTorch中的实现教程,希望对你有帮助。当然,实际应用中还可能涉及到更多细节和技巧,需要根据具体情况进行调整和改进。 ### 回答2: 遥感图像语义分割是指使用遥感图像数据进行像素级别的分类和分割,即将图像中的每个像素按照其所属的类别进行标注。PyTorch是一种流行的深度学习框架,可以用于实现遥感图像语义分割。 以下是一个简单的遥感图像语义分割PyTorch实现教程: 1. 数据准备:首先,准备好遥感图像数据集,包括训练集和测试集。每张图像都需要有相应的标注,标注应为像素级别的类别信息。 2. 数据预处理:对于遥感图像数据进行预处理,包括图像增强、尺寸调整和标准化等操作。这可以使用Python的PIL库等工具来实现。 3. 搭建模型:选择适合遥感图像语义分割的模型,比如U-Net、DeepLab等。使用PyTorch搭建网络模型,定义网络结构、损失函数和优化器等。 4. 数据加载和训练:使用PyTorch的数据加载器加载训练数据集,并使用定义的优化器和损失函数进行训练。可以设置适当的批次大小和训练轮数。 5. 模型评估:在训练过程中,可以使用测试集对模型进行评估,计算准确率、召回率、F1分数等指标,以了解模型的性能。 6. 模型优化:根据评估结果,可以尝试调整模型的参数、损失函数或优化器等,以提高模型的准确性和鲁棒性。 7. 模型应用:训练好的模型可以应用于新的遥感图像数据,进行像素级别的语义分割任务。 总结:遥感图像语义分割PyTorch实现可以按照上述步骤进行,其中数据准备、搭建模型、数据加载和训练等是关键步骤。通过不断优化和调整,可以得到高准确性的语义分割模型,从而应用于遥感图像的各种应用场景。 ### 回答3: 遥感图像语义分割是指利用遥感图像对地表进行分类和分割的技术。PyTorch是一个流行的深度学习框架,提供了强大的功能和易于使用的API,因此在遥感图像语义分割任务中也经常被使用。 以下是一个简要的遥感图像语义分割PyTorch实现教程: 1. 数据准备:首先,你需要准备用于训练的遥感图像数据集。这些数据集应包含遥感图像和相应的标签图像,其中标签图像用于指示每个像素的类别。可以使用遥感图像处理软件,如ENVI或GDAL,来预处理和准备数据。 2. 数据加载:使用PyTorch中的数据加载器,如torch.utils.data.DataLoader,加载准备好的数据集。你可以自定义一个子类,继承自torch.utils.data.Dataset,来处理数据加载和转换。 3. 构建模型:在PyTorch中,可以使用torch.nn模块来构建语义分割模型。常用的模型包括U-Net、FCN和DeepLab等。你可以根据任务的具体需求选择适当的模型结构,并根据需要进行修改和调整。 4. 定义损失函数:在语义分割任务中,常用的损失函数是交叉熵损失函数。在PyTorch中,可以使用torch.nn.CrossEntropyLoss来定义损失函数。 5. 训练模型:使用PyTorch的训练循环,将图像输入模型,计算损失函数,更新模型参数,并循环迭代该过程。你需要选择合适的优化器,如SGD或Adam,并选择适当的超参数。 6. 评估和预测:训练完成后,可以使用模型对新的遥感图像进行预测。通过将图像输入模型,可以得到每个像素的类别预测结果。你可以使用各种评估指标,如交并比和准确率,来评估模型的性能。 以上是一个简单的遥感图像语义分割PyTorch实现教程。通过理解和实践这些步骤,你可以开始进行遥感图像语义分割任务,并逐渐提升你的模型和技术水平。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值