目录
1. 函数是什么
数学中我们常见到函数的概念。但是你了解C语言中的函数吗? 百度百科中对函数的定义:子程序
- 在计算机科学中,子程序(英语:Subroutine, procedure, function, routine,method ,2subprogram, callable unit),是一个大型程序中的某部分代码, 由一个或多个语句块组成。它负责完成某项特定任务,而且相较于其他代 码,具备相对的独立性。
- 一般会有输入参数并有返回值,提供对过程的封装和细节的隐藏。这些代码通常被集成为软件库。
C语言中的函数分类:
- 库函数
- 自定义函数
2.库函数
为什么会有库函数?
1. 我们知道在我们学习C语言编程的时候,总是在一个代码编写完成之后迫不及待的想知道结果,想把这个结果打印到我们的屏幕上看看。这个时候我们会频繁的使用一个功能:将信息按照一定的格式打印到屏幕上(printf)。
2. 在编程的过程中我们会频繁的做一些字符串的拷贝工作(strcpy)。
3. 在编程是我们也计算,总是会计算n的k次方这样的运算(pow)。
像上面我们描述的基础功能,它们不是业务性的代码。我们在开发的过程中每个程序员都可能用的到,为了支持可移植性和提高程序的效率,所以C语言的基础库中提供了一系列类似的库函数,方便程序员进行软件开发。
那怎么学习库函数呢?
这里我们简单的看看:www.cplusplus.com
简单的总结,C语言常用的库函数都有:
- IO函数
- 字符串操作函数
- 字符操作函数
- 内存操作函数
- 时间/日期函数
- 数学函数
- 其他库函数
我们参照文档,学习几个库函数:(教会学生怎么使用文档来学习库函数)。
char * strcpy ( char * destination, const char * source );
//strcpy 使用
#include<stdio.h>
#include<string.h>
int main()
{
//char * strcpy ( char * destination, const char * source );
char arr1[] = "wuhan";
char arr2[] = "beijing";
strcpy(arr2, arr1);
printf("%s\n", arr2);
return 0;
}
void * memset ( void * ptr, int value, size_t num );
#include<stdio.h>
#include<string.h>
int main()
{
char arr[] = "hello wuhan!";
memset(arr, '*', 5);
printf("%s\n", arr);//***** wuhan
return 0;
}
注: 但是库函数必须知道的一个秘密就是:使用库函数,必须包含#include 对应的头文件。
这里对照文档来学习上面几个库函数,目的是掌握库函数的使用方法。
如何学会使用库函数?
需要全部记住吗?No 需要学会查询工具的使用:
3.自定义函数
如果库函数能干所有的事情,那还要程序员干什么?
所有更加重要的是自定义函数。
自定义函数和库函数一样,有函数名,返回值类型和函数参数。 但是不一样的是这些都是我们自己来设计。这给程序员一个很大的发挥空间。
函数的组成:
ret_type fun_name(para1, * )
{
statement;//语句项
}
ret_type 返回类型
fun_name 函数名
para1 函数参数
我们举一个栗子:
#include<stdio.h>
int getMax(int x, int y)
{
return x > y ? x : y;
}
int main()
{
int a = 10;
int b = 20;
int max = getMax(a, b);//调用函数
printf("max=%d", max);
return 0;
}
写一个函数可以交换两个整形变量的内容。
#include<stdio.h>
void Swap1(int x, int y)
{
int tmp = 0;
tmp = x;
x = y;
y = tmp;
}
void Swap2(int* x, int* y)
{
int tmp = 0;
tmp = *x;
*x = *y;
*y = tmp;
}
int main()
{
int a = 10;
int b = 20;
printf("a=%d b=%d\n", a, b);
Swap1(a, b);
printf("Swap1:a=%d b=%d\n", a, b);
Swap2(&a, &b);
printf("Swap2:a=%d b=%d\n", a, b);
return 0;
}
4. 函数参数
实际参数(实参):
真实传给函数的参数,叫实参。实参可以是:常量、变量、表达式、函数等。无论实参是何种类型的量,在进行函数调用时,它们都必须有确定的值,以便把这些值传送给形参。
形式参数(形参):
形式参数是指函数名后括号中的变量,因为形式参数只有在函数被调用的过程中才实例化(分配内存单元),所以叫形式参数。形式参数当函数调用完成之后就自动销毁了。因此形式参数只在函数中有效。
上面Swap1和Swap2函数中的参数x,y,px,py 都是形式参数。在main函数中传给Swap1的num1,num2和传给Swap2函数的&num1,&num2是实际参数。
这里我们对函数的实参和形参进行分析:
代码对应的内存分配如下:
这里可以看到Swap1函数在调用的时候,x,y拥有自己的空间,同时拥有了和实参一模一样的内容。所以我们可以简单的认为:形参实例化之后其实相当于实参的一份临时拷贝。
5. 函数调用
传值调用
函数的形参和实参分别占有不同内存块,对形参的修改不会影响实参。
传址调用
- 传址调用是把函数外部创建变量的内存地址传递给函数参数的一种调用函数的方式。
- 这种传参方式可以让函数和函数外边的变量建立起正真的联系,也就是函数内部可以直接操作函数外部的变量。
练习
1. 写一个函数可以判断一个数是不是素数。
2. 写一个函数判断一年是不是闰年。
3. 写一个函数,实现一个整形有序数组的二分查找。
4. 写一个函数,每调用一次这个函数,就会将num的值增加1。
1. 写一个函数可以判断一个数是不是素数。
//1. 写一个函数可以判断一个数是不是素数。
#include<stdio.h>
#include<math.h>
//素数返回1,不是素数返回0
int is_prime(int n)
{
int j = 0;
for (j = 2; j <= sqrt(n); j++)
{
if (n % j == 0)
{
return 0;
}
}
return 1;
}
int main()
{
int input = 0;
int p = 0;
printf("Please enter a prime number>:");
scanf("%d", &input);
p = is_prime(input);
if (p == 0)
{
printf("%d is not prime number\n", input);
}
else
{
printf("%d is prime number\n", input);
}
return 0;
}
2. 写一个函数判断一年是不是闰年。
//2. 写一个函数判断一年是不是闰年。
#include<stdio.h>
//闰年返回1,不是素数返回0
int IsLeapYear(int year)
{
//1.能被4整除并且不能被100整除的是闰年
//2.能被400整除是闰年
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
{
return 1;
}
return 0;
}
int main()
{
int y = 0;
int count = 0;
for (y = 1000; y <= 2000; y++)
{
if (IsLeapYear(y))
{
printf("%d ", y);
count++;
}
}
printf("\ntotal:%d", count);
return 0;
}
3. 写一个函数,实现一个整形有序数组的二分查找。
//3. 写一个函数,实现一个整形有序数组的二分查找。
#include<stdio.h>
//二分查找 未找到:返回-1 找到:返回下标
//由于数组arr传过来的是首元素的地址,数组长度无法通过sizeof计算
//所以数组长度sz需要计算好后,传过来
int BinarySearch(int arr[], int sz, int value)
{ //
int left = 0;
int right = sz - 1;
while (left <= right)
{
int mid = (left + right) / 2;
if (arr[mid] < value)
{
left = mid + 1;
}
else if (arr[mid] > value)
{
right = mid - 1;
}
else
{
return mid;
}
}
return -1;
}
int main()
{
int arr[] = { 1,2,3,4,5,6,7,8,9,10,15,25,32 };
int k = 7;
int sz = sizeof(arr) / sizeof(arr[0]);
int ret = BinarySearch(arr, sz, k);
if (ret == -1)
{
printf("The specified number %d cannot be found\n", k);
}
else
{
printf("The specified number %d was found,subscript is %d", k, ret);
}
return 0;
}
4. 写一个函数,每调用一次这个函数,就会将num的值增加1。
//4. 写一个函数,每调用一次这个函数,就会将num的值增加1。
#include<stdio.h>
void Add(int* x)
{
//*x += 1;
(*x)++;
}
int main()
{
int num = 0;
Add(&num);
printf("num=%d\n", num);
Add(&num);
printf("num=%d\n", num);
Add(&num);
printf("num=%d\n", num);
return 0;
}
6. 函数的嵌套调用和链式访问
函数和函数之间可以有机的组合的。
嵌套调用
//嵌套调用
#include <stdio.h>
void new_line()
{
printf("hehe\n");
}
void three_line()
{
int i = 0;
for (i = 0; i < 3; i++)
{
new_line();
}
}
int main()
{
three_line();
return 0;
}
链式访问
把一个函数的返回值作为另外一个函数的参数。
//链式访问
//把一个函数的返回值作为另外一个函数的参数
#include <stdio.h>
#include <string.h>
int main()
{
char arr[20] = "hello";
int ret = strlen(strcat(arr, "bit"));//这里介绍一下strlen函数
printf("%d\n", ret);
return 0;
}
#include <stdio.h>
int main()
{
printf("%d", printf("%d", printf("%d", 43)));
//结果是啥?
//4321
return 0;
}
7. 函数的声明和定义
函数声明
1. 告诉编译器有一个函数叫什么,参数是什么,返回类型是什么。但是具体是不是存在,无关紧要。
2. 函数的声明一般出现在函数的使用之前。要满足先声明后使用。
3. 函数的声明一般要放在头文件中的。
函数定义
函数的定义是指函数的具体实现,交待函数的功能实现。
test.h的内容 放置函数的声明
#ifndef __TEST_H__ //if not define 如果没有定义过
#define __TEST_H__
//函数的声明
int Add(int x, int y);//声明函数
#endif //__TEST_H__
test.c的内容 放置函数的实现
#include "test.h"//引用自定义头文件
//函数Add的实现
int Add(int x, int y)
{
return x+y;
}
这种分文件的书写形式,在三字棋和扫雷的时候,再教学生分模块来写。
8. 函数递归
什么是递归?
程序调用自身的编程技巧称为递归( recursion)。 递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。 递归的主要思考方式在于:把大事化小
递归的两个必要条件
- 存在限制条件,当满足这个限制条件的时候,递归便不再继续。
- 每次递归调用之后越来越接近这个限制条件。
练习1:(画图讲解)
接收一个整型值(无符号),按照顺序打印它的每一位。 例如: 输入:1234,输出 1 2 3 4.
参考代码:
//接收一个整型值(无符号),按照顺序打印它的每一位。
//例如: 输入:1234,输出 1 2 3 4.
#include<stdio.h>
void print(int n)
{
if (n > 9)
{
print(n / 10);
}
printf("%d ",n % 10);
}
int main()
{
unsigned int num = 0;
scanf("%d", &num);//1234
print(num);
return 0;
}
练习2:(画图讲解)
编写函数不允许创建临时变量,求字符串的长度。
//练习2
//编写函数不允许创建临时变量,求字符串的长度
#include<stdio.h>
//普通方法
int my_strlen(char* str)
{
int count = 0;
while (*str != '\0')
{
count++;
str++;
}
return count;
}
//递归方式
int my_strlen1(char* str)
{
if (*str != '\0')//判断是否为结尾 \0
{
return 1 + my_strlen1(str+1);
}
else
{
return 0;
}
}
int main()
{
char arr[] = { "wuhan" };
int strlen = my_strlen(arr);
int strlen1 = my_strlen1(arr);
printf("strlen=%d\n", strlen);
printf("strlen1=%d\n", strlen1);
return 0;
}
递归与迭代
练习3:求阶乘
求n的阶乘。(不考虑溢出)
//练习3:求n的阶乘。(不考虑溢出)
#include<stdio.h>
//求解成
int Factorial(int n)
{
//方法一:递归法
//if (n <= 1)
//{
// return 1;
//}
//else
//{
// return n * Factorial(n - 1);
//}
//方法二:迭代法 推荐
int result = 1;
while (n > 1)
{
result *= n;
n -= 1;
}
return result;
}
int main()
{
int n = 0;
printf("Please enter a number to calculate his factorial\n");
scanf("%d", &n);
int fa = Factorial(n);
printf("The factorial of n is:%d", fa);
return 0;
}
练习4:
求第n个斐波那契数。(不考虑溢出)
//练习4:
//求第n个斐波那契数。(不考虑溢出)
#include<stdio.h>
//递归可以求解 但是效率太低
//方法一:递归法 当n太大时 效率极低,重复大量的计算 不推荐
int Fibonacci(int n)
{
if (n <= 2)
{
return 1;
}
else
{
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
}
//方法二:迭代法
int Fib(int n)
{
int a = 1;//第 n-2
int b = 1;//第 n-1
int c = 1;//第n 计算结果
while (n > 2)
{
c = a + b;//1=2=3
a = b;
b = c;
n--;
}
return c;
}
int main()
{
int n = 0;
printf("Please enter a number to find the nth Fibonacci number\n");
scanf("%d", &n);
//int ret = Fibonacci(n);//方法一
int ret = Fib(n);//方法二
printf("The nth Fibonacci number is:%d\n", ret);
return 0;
}
练习5:
将abcdef倒序重新排列为fedcba
//练习5:将abcdef倒序重新排列为fedcba
//方法一
#include<stdio.h>
//计算字符串长度
int my_strlen(char* str)
{
int count = 0;
while (*str != '\0')
{
count++;
str++;
}
return count;
}
//倒序排列
void reverse_string(char* str)
{
int left = 0;
int right = my_strlen(str) - 1;
while (left < right)
{
//数组下标方式
//char tmp = str[left];
//str[left] = str[right];
//str[right] = tmp;
//指针方式
char tmp = *(str + left);
*(str + left) = *(str + right);
*(str + right) = tmp;
left++;
right--;
}
}
int main()
{
char arr[] = { "abcdef" };
reverse_string(arr);//数组名arr是数组arr首元素的地址
printf("%s\n", arr);//fedca
return 0;
}
//练习5:将abcdef倒序重新排列为fedcba
//方法二 递归方法
#include<stdio.h>
//计算字符串长度
int my_strlen(char* str)
{
int count = 0;
while (*str != '\0')
{
count++;
str++;
}
return count;
}
void reverse_string(char* str)
{
char tmp = *str;
int len = my_strlen(str);
*str = *(str + len - 1);
*(str + len - 1) = '\0';
//判断条件
if (my_strlen(str + 1) >= 2)
{
reverse_string(str + 1);
}
*(str + len - 1) = tmp;
}
int main()
{
char arr[] = { "abcdef" };
reverse_string(arr);//数组名arr是数组arr首元素的地址
printf("%s\n", arr);//fedca
return 0;
}
提示:
1. 许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。
2. 但是这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性稍微差些。
3. 当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。
函数递归的几个(经典题目):
1. 汉诺塔问题
2. 青蛙跳台阶问题
1.猴子吃桃
猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个 ,第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下 的一半加一个。到第10天早上想再吃时,见只剩下一个桃子了。求第一天共摘了多少。
//方法一 循环
#include <stdio.h>
int main()
{
int i=9,sum=1;//i表示天数,sum表示桃子数,第十天桃子剩余一个
for(i=9;i>0;i--)
{
sum=(sum+1)*2;
}
printf("猴子一共采摘了%d个桃子",sum);
return 0;
}
//方法二 函数递归
#include<stdio.h>
int ctz(int n)
{
int num;
if(n==1)
{
return 1;
}
else
{
num = 2*(ctz(n-1)+1);
}
return num;
}
int main()
{
int ctz(int);
printf("%d",ctz(10));
return 0;
}