Multi-Query Attention 阅读笔记

本文介绍了《Fast Transformer Decoding》的研究成果,该成果提出了一种新的注意力机制——multi-query attention,它优化了传统的multi-head attention,减少了运算复杂度,同时保持了准确性,显著提高了深度学习模型的解码速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Fast Transformer Decoding: One Write-Head is All You Need》

核心贡献:优化 multi-head attention 为文中命名的 multi-query attention,减少多head相关运算,不降低精度 且 大幅提升解码速度。

具体对比如下:
multi-head attention:
-
multi-query attention:
-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Hope__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值