theano reshape -1

import theano
import numpy as np

ones = theano.shared(np.float32([[1,2,3],[4,5,6],[7,8,9]]))

print(ones.get_value())

print(ones.reshape([1,-1]).eval())

print(ones.reshape((1,-1)).eval())

print(ones.reshape((-1,)).eval())

print(ones.reshape((-1,1)).eval())

# print(ones.reshape((2,-1)).eval()) # ValueError: Cannot reshape input of shape (3, 3) to shape [ 2 -1]

结果

[[ 1. 2. 3.]
[ 4. 5. 6.]
[ 7. 8. 9.]]

[[ 1. 2. 3. 4. 5. 6. 7. 8. 9.]]

[[ 1. 2. 3. 4. 5. 6. 7. 8. 9.]]

[ 1. 2. 3. 4. 5. 6. 7. 8. 9.]

[[ 1.]
[ 2.]
[ 3.]
[ 4.]
[ 5.]
[ 6.]
[ 7.]
[ 8.]
[ 9.]]

Theano 中实现 Group Normalization(组归一化)可以使用以下步骤: 1. 导入必要的库: ```python import theano.tensor as T import theano ``` 2. 定义一个函数来计算标准化的输出: ```python def group_norm(x, G, eps=1e-5): # x: 输入的 Theano 变量,大小为 (batch_size, num_channels, height, width) # G: 组大小,整数值 # eps: 避免除以零的小常数 # 获取输入的形状 batch_size, num_channels, height, width = x.shape # 将输入数据重新排列以便进行组归一化 x = T.reshape(x, (batch_size, G, num_channels // G, height, width)) # 计算每个组的平均值和标准差 mean = T.mean(x, axis=(2, 3, 4), keepdims=True) var = T.var(x, axis=(2, 3, 4), keepdims=True) # 对每个组进行标准化 x = (x - mean) / T.sqrt(var + eps) # 将结果重新排列为原来的形状 x = T.reshape(x, (batch_size, num_channels, height, width)) return x ``` 在这个函数中,我们首先将输入数据重新排列成大小为 `(batch_size, G, num_channels // G, height, width)` 的张量。然后,我们计算每个组的平均值和标准差,并用它们来对每个组进行标准化。最后,我们将结果重新排列为原来的形状。 3. 编译函数: ```python x = T.tensor4('x') # 输入的 Theano 变量 G = 4 # 组大小 y = group_norm(x, G) f = theano.function([x], y) ``` 在这里,我们定义了一个输入变量 `x` 和一个组大小 `G`。然后,我们使用 `group_norm` 函数来计算标准化的输出 `y`。最后,我们使用 `theano.function` 编译一个函数,以便我们可以将输入数据传递给它并获取输出。 现在,我们可以使用 `f` 函数将输入数据传递给它并获得输出。例如,如果我们有一个大小为 `(1, 32, 32, 3)` 的输入张量 `x`,我们可以这样调用 `f` 函数: ```python import numpy as np x = np.random.randn(1, 32, 32, 3).astype(np.float32) y = f(x) ``` 这将计算 `x` 的标准化输出并将其存储在 `y` 中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耐心是关键

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值