xgboost 在一次训练中得到iteration里最好的模型,而不是最后一个iteration的模型

[240]   train-logloss:0.263565  valid-logloss:0.392514
[250]   train-logloss:0.261231  valid-logloss:0.392377
[260]   train-logloss:0.257999  valid-logloss:0.392149
[270]   train-logloss:0.254814  valid-logloss:0.39179
[280]   train-logloss:0.251346  valid-logloss:0.39179
[290]   train-logloss:0.248382  valid-logloss:0.391635
[300]   train-logloss:0.245682  valid-logloss:0.392021
[310]   train-logloss:0.243229  valid-logloss:0.392104
[320]   train-logloss:0.241036  valid-logloss:0.392591
Stopping. Best iteration:
[292]   train-logloss:0.247746  valid-logloss:0.391567

如果训练时设置了early_stopping_rounds参数,则可以

ypred = bst.predict(dtest, ntree_limit=bst.best_ntree_limit)

bst是训练好的模型
我是参看
https://xgboost.readthedocs.io/en/latest/python/python_intro.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Hope__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值