第一次使用拉勾网求职经历

本文分享了一位实施工程师的拉勾网求职经历,从更新简历到收到多家公司面试邀请,再到面试过程中的笔试、面试环节,以及薪资谈判。作者对比了拉勾网上标注的薪资与实际薪资的差距,并对面试过程中的感受和决定进行了描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正式毕业已经一年了,感觉现在这个工作跟自己的职业规划有差距(实施工程师岗位),所以就在月初跟部门老大递交了辞职申请。下周五办理辞职手续,我是本周一才开始在拉勾网上更新简历,挑选了4家感觉还不错的公司投了下去。由于是周一下班后投递的简历,所以到周二早上刚上班就在拉勾上看到简历已经被查看,几分钟后简历被4家公司的hr转发到用人部门查看,然后到中午收到了第一家公司的面试邀请,下午收到第二和第三家面试邀请,第四家公司是在周三上午收到的面试邀请。跟第一家约定的面试时间是周三上午,第二家是周四上午,第三家约定的是周五下午,第四家约定的是下周一下午。由于要准备字纸简历,自己制作太麻烦,直接把拉勾网上的简历下载打印了5份。

周三上午去第一家公司,先做了一套笔试题,包括EQ试题和专业题,都比较简单,除了一个数据库优化的问题没做出来,接着开始面试,面试官是部门经理,聊了一下之前的工作内容和项目经验,谈了一下正在应聘的这个岗位工作内容,最后谈了一下薪资(PS:拉勾网上单位标注的薪资普遍比实际情况高啊!),整个过程还是很轻松的,然后让等通知。

周四上午面试第二家公司,跟第一家一样,笔试、面试,只是在面试的过程中面试官临时追加了一道数据库编

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于络传输等。 本项目的核心是格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值