题目
导数(Derivative),也叫导函数值。事实上, f ’( x ) f’(x) f’(x) 表示变化量,考虑一个人的 速度与时间的函数为 y = 7 y=7 y=7,其中 x x x 表示时间, y y y 为速度,那么显而易见它速度变化量 f ′ ( x ) = 0 f'(x) = 0 f′(x)=0。(速度没有变化)。考虑 y = 7 x y=7x y=7x,那么显而易见它速度变化量 f ′ ( x ) = 7 f'(x) = 7 f′(x)=7。(速度每秒钟加上 7 7 7)
假如考虑一个函数 y = x 2 + x + 1 y = x^2 + x + 1 y=x2+x+1,取 x x x 和 x 0 ( x 0 ≥ x ) x_0(x_0 \geq x) x0(x0≥x),那么它的导数 f ′ ( x ) f'(x) f′(x) 就表示当 x 0 x_0 x0 无限接近于 x x x 时它的斜率(就是说在一次函数 y = k x + b y = kx + b y=kx+b 中 k k k 的大小)。 y = x 2 + x + 1 y = x^2 + x + 1 y=x2+x+1 中两个点就是 ( x , x 2 + x + 1 ) (x,x^2 + x + 1) (x,x2+x+1), ( x 0 , x 0 2 + x 0 + 1 ) (x_0,x_0^2 + x_0 + 1) (x0,x02+x0+1)。它们的斜率就是 ( x 0 2 + x 0 + 1 ) − ( x 2 + x + 1 ) x 0 − x \dfrac{(x_0^2 + x_0 + 1) - (x^2 + x + 1)}{x_0 - x} x0−x(x02+x0+1)−(x2+x+1),即 x 0 2 + x 0 − x 2 − x x 0 − x = x 0 + x + 1 \dfrac{x_0^2 + x_0 - x^2 - x}{x_0 - x} = x_0 + x + 1 x0−xx02+x0−x2−x=x0+x+1。当 x 0 x_0 x0 无限接近于 x x x 时,可以考虑让 x 0 ← x x_0 \gets x x0←x ,此时 f ′ ( x ) = 2 x + 1 f'(x) = 2x + 1 f′(x)=2x+1,运算方式可简要写为 f ′ ( x ) = lim x 0 → x ( x 0 2 + x 0 + 1 ) − ( x 2 + x + 1 ) x 0 − x = lim x 0 → x x 0 + x + 1 = 2 x + 1 f'(x) = \lim_{x_0 \to x} \dfrac{(x_0^2 + x_0 + 1) - (x^2 + x + 1)}{x_0 - x} = \lim_{x_0 \to x}x_0 + x + 1 = 2x + 1 f′(x)=limx0→xx0−x(x02+x0+1)−(x2+x+1)=limx0→xx0+x+1=2x+1,其中 lim x 0 → x \lim_{x_0 \to x} limx0→x 表示 x 0 x_0 x0 无限接近于 x x x。对于任意一个题目中给定的函数 f ( x ) f(x) f(x)(不是所有函数),都可以用 f ′ ( x ) = lim x 0 → x f ( x 0 ) − f ( x ) x 0 − x f'(x) = \lim_{x_0 \to x} \dfrac{f(x_0) - f(x)}{x_0 - x} f′(x)=limx0→xx0−xf(x0)−f(x) 计算导数。
提示: x 0 n − x n = ( x 0 − x ) ( x 0 n − 1 + x 0 n − 2 x + x 0 n − 3 x 2 ⋯ + x 0 1 x n − 2 + x n − 1 ) x_0 ^ n - x^ n = (x_0 - x)(x_0^{n - 1} + x_0^{n - 2}x + x_0^{n - 3}x^2 \dots +x_0^1x^{n - 2}+x^{n - 1}) x0n−xn=(x0−x)(x0n−1+x0n−2x+x0n−3x2⋯+x01xn−2+xn−1)
给定一个函数
f
(
x
)
=
a
1
x
n
+
a
2
x
n
−
1
+
.
.
.
+
a
n
−
1
x
2
+
a
n
x
+
a
n
+
1
f(x)=a_1x^n+a_2x^{n-1}+...+a_{n-1}x^2+a_{n}x+a_{n+1}
f(x)=a1xn+a2xn−1+...+an−1x2+anx+an+1 求
f
′
(
x
)
f'(x)
f′(x)
思路
根据题目,我们可以将题面中给定的 f ′ ( x ) = lim x 0 → x f ( x 0 ) − f ( x ) x 0 − x f'(x) = \lim_{x_0 \to x} \dfrac{f(x_0) - f(x)}{x_0 - x} f′(x)=limx0→xx0−xf(x0)−f(x) 带入,得 f ′ ( x ) = lim x 0 → x f ( x 0 ) − f ( x ) x 0 − x = lim x 0 → x ( a 1 x 0 n + a 2 x 0 n − 1 + . . . + a n − 1 x 0 2 + a n x 0 + a n + 1 ) − ( a 1 x n + a 2 x n − 1 + . . . + a n − 1 x 2 + a n x + a n + 1 ) x 0 − x f'(x) = \lim_{x_0 \to x} \dfrac{f(x_0) - f(x)}{x_0 - x} = \lim_{x_0 \to x}\dfrac{(a_1x_0^n+a_2x_0^{n-1}+...+a_{n-1}x_0^2+a_{n}x_0+a_{n+1})-(a_1x^n+a_2x^{n-1}+...+a_{n-1}x^2+a_{n}x+a_{n+1})}{x_0 - x} f′(x)=limx0→xx0−xf(x0)−f(x)=limx0→xx0−x(a1x0n+a2x0n−1+...+an−1x02+anx0+an+1)−(a1xn+a2xn−1+...+an−1x2+anx+an+1),化简得 f ′ ( x ) = lim x 0 → x a 1 ( x 0 n − x n ) + a n ( x 0 − x ) ⋯ + a 2 ( x 0 n − 1 − x n − 1 ) x 0 − x f'(x) = \lim_{x_0 \to x}\dfrac{a_1(x_0^n-x^n)+a_n(x_0-x)\dots+a_2(x_0^{n-1}-x^{n-1})}{x_0-x} f′(x)=limx0→xx0−xa1(x0n−xn)+an(x0−x)⋯+a2(x0n−1−xn−1),根据提示可以写出 f ′ ( x ) = lim x 0 → x a 1 ( x 0 n − 1 + x 0 n − 2 x + ⋯ + x 0 x n − 2 + x n − 1 ) + a 2 ( x 0 n − 2 + x 0 n − 3 x + ⋯ + x 0 x n − 3 + x n − 2 ) ⋯ + a n f'(x) = \lim_{x_0 \to x}a_1(x_0^{n-1} + x_0^{n-2}x+\dots+ x_0x^{n-2}+x^{n-1})+a_2(x_0^{n-2} + x_0^{n-3}x+\dots+ x_0x^{n-3}+x^{n-2})\dots+a_n f′(x)=limx0→xa1(x0n−1+x0n−2x+⋯+x0xn−2+xn−1)+a2(x0n−2+x0n−3x+⋯+x0xn−3+xn−2)⋯+an,根据题目意思,我们将 x 0 x_0 x0 近似看作 x x x, f ′ ( x ) = lim x 0 → x a 1 n x n − 1 + a 2 ( n − 1 ) x n − 2 ⋯ + a n f'(x) = \lim_{x_0 \to x}a_1nx^{n-1}+a_2(n-1)x^{n-2}\dots+a_n f′(x)=limx0→xa1nxn−1+a2(n−1)xn−2⋯+an,根据题目输出即可。注意如果出现系数为 0 0 0 的项要省略。
对于 100 % 100\% 100%的数据 1 ≤ n ≤ 1 0 6 , 0 ≤ a i ≤ 1 0 9 1\le n\le 10^{6},0\le a_i\le 10^{9} 1≤n≤106,0≤ai≤109,保证 a 1 ≠ 0 a_1\not=0 a1=0
Subtask | 特殊性质 | 分值 |
---|---|---|
1 | n ≤ 1 0 3 , a i ≤ 1 0 3 n\le 10^{3},a_i\le10^{3} n≤103,ai≤103 | 10 |
2 | n ≤ 1 0 4 , a i ≤ 1 0 6 n\le 10^{4},a_i\le10^{6} n≤104,ai≤106 | 20 |
3 | n ≤ 1 0 5 n\le 10^{5} n≤105 | 30 |
4 | 无 | 40 |