常用统计学术语

标准差

这个跟方差有点联系

标准差 - 会计百科

中位数

百度安全验证icon-default.png?t=N7T8https://baijiahao.baidu.com/s?id=1772109443912013906&wfr=spider&for=pc

Q1Q3

关于描述统计 - 知乎

初识统计学--描述性统计分析 - 知乎

  • 四分位数

四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。

第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。

第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。

第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。

第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。

Q1、Q2、Q3的计算方法(基于N+1):

首先确定四分位数的位置:

Q1的位置= (n+1) × 0.25

Q2的位置= (n+1) × 0.5

Q3的位置= (n+1) × 0.75

n表示项数

对于四分位数的确定,有不同的方法,另外一种方法基于N-1。即

Q1的位置=1+(n-1)x 0.25

Q2的位置=1+(n-1)x 0.5

Q3的位置=1+(n-1)x 0.75

统计学中的M(Q1, Q3)是中位数和四分位距的一种测量方式。其中,Q1代表数据的25%分位数(即第一个四分位数),Q3代表数据的75%分位数(即第三个四分位数)。

M(Q1, Q3)通常用于描述数据的集中程度和离散程度。中位数表示数据中间的位置,而四分位距表示数据的离散程度。四分位距等于第三个四分位数减去第一个四分位数。

例如,如果一个数据集的M(Q1, Q3)为(35,78),则说明该数据集的中位数为35,第一个四分位数为35,第三个四分位数为78,四分位距为43。

M(Q1,Q3)也可以用来检测数据集的异常值,根据一般规则,任何小于 Q1 – 1.5IQR 或 大于 Q3 + 1.5IQR 的数值都可以认定为异常值。

统计学M(Q1,Q3)什么意思_百度知道

2.5%分位数、97.5%分位数

数据去极值 - 知乎

以下是一个均值=10,标准差=0.5的正态分布概率密度曲线的例子,x=9.020的垂线与该分布的概率密度曲线和X轴所围成的左侧区域面积=0.025,该面积表示在随机变量X的总体分布中,有2.5%的值小于9.020,也就是说在总体分布中,随机变量X的取值小于9.020的概率为2.5%。同样,x=10.98的垂线与该分布的概率密度曲线和X轴所围成的右侧区域面积=0.025,该面积表示在随机变量X的总体分布中,有2.5%的值大于10.98,也就是说在总体分布中,随机变量X的取值大于10.98的概率为2.5%(也即是随机变量X的取值小于10.98的概率为97.5%)。在这个分布中,x=9.020的值被称为X的2.5%分位数(即:X2.5%=9.020),x=10.98的值被称为X的97.5%分位数(X97.5%=10.98)。随机变量X有95%(即:97.5% - 2.5%=95%)的取值落在9.020至10.98之间。每个分位数都是随机变量所有可能取值中的某个值。按照定义,若某个值Xp被称为随机变量X的p分位数,则随机变量X的取值小于Xp的概率为p。

95%置信区间?

 

Python 是一种广泛应用于数据管理和分析的编程语言。对于统计学家、数据分析师等专业人士而言,编写 Python 的统计学代码是一项非常重要的任务。这些代码可以用于计算各种统计学指标和分析数据的分布等内容。 以下是 Python 统计学常用的公式: [均值 (Mean)](https://zh.wikipedia.org/wiki/%E7%AE%97%E6%9C%AF%E5%9D%87%E5%80%BC) : 可以用统计学术语将均值描述为测量样本中数值的中心趋势。均值需要将所有数值加起来,然后除以样本值的总数。 Python 代码: ```python mean = sum(data) / len(data) ``` [中位数(Median)](https://zh.wikipedia.org/wiki/%E4%B8%AD%E4%BD%8D%E6%95%B8): 中位数是按升序排列的数据集中的中间位置的值。对于有偶数个数据点的数据集,将中间两个数据点的值相加,然后除以 2 可以得到中位数。 Python 代码: ```python data.sort() if len(data) % 2 == 0: median = (data[len(data)//2] + data[len(data)//2-1]) / 2 else: median = data[len(data)//2] ``` [方差(Variance)](https://zh.wikipedia.org/wiki/%E6%95%B0%E6%8D%AE%E5%8F%98%E5%BC%82): 方差是测量数据的分散性或变化程度的一种指标。用总体平均值减去每个数据点取平方的和并除以总体数据点的数量。 Python 代码: ```python mean = sum(data) / len(data) variance = sum((data - mean) ** 2) / len(data) ``` [标准差(Standard Deviation)](https://zh.wikipedia.org/wiki/%E6%A8%99%E6%BA%96%E5%B7%AE): 标准差是方差的正平方根。标准差越小,说明数据的离散程度越小;标准差越大,说明数据的离散程度越大。 Python 代码: ```python import math mean = sum(data) / len(data) std_dev = math.sqrt(sum((data - mean) ** 2) / len(data)) ``` 这些是 Python 统计学常用的公式,但它们远不是全部。根据不同研究、领域和应用,可能涉及到更多或不同的公式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值