标准差
这个跟方差有点联系
中位数
百度安全验证https://baijiahao.baidu.com/s?id=1772109443912013906&wfr=spider&for=pc
Q1、Q3
- 四分位数
四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。
第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。
Q1、Q2、Q3的计算方法(基于N+1):
首先确定四分位数的位置:
Q1的位置= (n+1) × 0.25
Q2的位置= (n+1) × 0.5
Q3的位置= (n+1) × 0.75
n表示项数
对于四分位数的确定,有不同的方法,另外一种方法基于N-1。即
Q1的位置=1+(n-1)x 0.25
Q2的位置=1+(n-1)x 0.5
Q3的位置=1+(n-1)x 0.75
统计学中的M(Q1, Q3)是中位数和四分位距的一种测量方式。其中,Q1代表数据的25%分位数(即第一个四分位数),Q3代表数据的75%分位数(即第三个四分位数)。
M(Q1, Q3)通常用于描述数据的集中程度和离散程度。中位数表示数据中间的位置,而四分位距表示数据的离散程度。四分位距等于第三个四分位数减去第一个四分位数。
例如,如果一个数据集的M(Q1, Q3)为(35,78),则说明该数据集的中位数为35,第一个四分位数为35,第三个四分位数为78,四分位距为43。
M(Q1,Q3)也可以用来检测数据集的异常值,根据一般规则,任何小于 Q1 – 1.5IQR 或 大于 Q3 + 1.5IQR 的数值都可以认定为异常值。
2.5%分位数、97.5%分位数

95%置信区间?
