二七、标准正交基下求坐标、投影的简便方法

1. 标准正交基定义

如果一个基中的每一个向量长度为1,且任意两个不同的向量的点积等于0,那么该基就称为标准正交基,例如:

B = \left \{ \begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3}\\ \frac{1}{3}\\ -\frac{2}{3} \end{bmatrix} \right \} \qquad or \qquad B' = \left \{ \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \right \}

2. 标准正交基下坐标的求法

标准正交基有什么好处?它们可以构造很好的坐标系,此时求该坐标系中的坐标时,可以简化计算量

\left [ \vec{x} \right ]_B = \begin{bmatrix} c_1\\ c_2\\ \cdots \\ c_k \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \cdot \vec{x} \\ \vec{v}_2 \cdot \vec{x} \\ \cdots \\ \vec{v}_k \cdot \vec{x} \end{bmatrix}

假设:

B=\left \{ \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k \right \}

为子空间V的标准正交基,

\vec{x} \in V

\Rightarrow \vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k

\Rightarrow \vec{v}_i \cdot \vec{x} = \vec{v}_i \cdot (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值