二七、标准正交基下求坐标、投影的简便方法

1. 标准正交基定义

如果一个基中的每一个向量长度为1,且任意两个不同的向量的点积等于0,那么该基就称为标准正交基,例如:

B = \left \{ \begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3}\\ \frac{1}{3}\\ -\frac{2}{3} \end{bmatrix} \right \} \qquad or \qquad B' = \left \{ \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \right \}

2. 标准正交基下坐标的求法

标准正交基有什么好处?它们可以构造很好的坐标系,此时求该坐标系中的坐标时,可以简化计算量

\left [ \vec{x} \right ]_B = \begin{bmatrix} c_1\\ c_2\\ \cdots \\ c_k \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \cdot \vec{x} \\ \vec{v}_2 \cdot \vec{x} \\ \cdots \\ \vec{v}_k \cdot \vec{x} \end{bmatrix}

假设:

B=\left \{ \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k \right \}

为子空间V的标准正交基,

\vec{x} \in V

\Rightarrow \vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k

\Rightarrow \vec{v}_i \cdot \vec{x} = \vec{v}_i \cdot (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k)

\Rightarrow \vec{v}_i \cdot \vec{x} = c_1 \vec{v}_i \cdot \vec{v}_1 + c_2 \vec{v}_i \cdot \vec{v}_2 + \cdots + c_i \vec{v}_i \cdot \vec{v}_i + \cdot + c_k \vec{v}_i \cdot \vec{v}_k

\Rightarrow \vec{v}_i \cdot \vec{x} = 0 + 0 + \cdots + c_i + \cdots + 0

\Rightarrow \vec{v}_i \cdot \vec{x} = c_i

因此:

\left [ \vec{x} \right ]_B = \begin{bmatrix} c_1\\ c_2\\ \cdots \\ c_k \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \cdot \vec{x} \\ \vec{v}_2 \cdot \vec{x} \\ \cdots \\ \vec{v}_k \cdot \vec{x} \end{bmatrix}

通用的做法是:

\left \[ \vec{x} \right \] = C^{-1} \vec{x}

但如果维数较多,那么计算量会非常大;如果C不可逆,求解会更麻烦

3. 标准正交基下投影的计算

Proj_V \vec{x} = AA^T \vec{x}

假设子空间V的基为标准正交基S:

S=\left \{ \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k \right \}

基S构成的矩阵为:

\underset{n \times k}{A} = \begin{bmatrix} | & | & & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_k \\ | & | & & | \end{bmatrix}

那么:

\underset{k \times n}{A^T} = \begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ & \cdots & \\ - & \vec{v}_k & - \\ \end{bmatrix}

\underset{k \times n}{A^T} \underset{n \times k}{A} =\begin{bmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ & \cdots & \\ - & \vec{v}_k & - \\ \end{bmatrix} \begin{bmatrix} | & | & & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_k \\ | & | & & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_k

因此:

Proj_V \vec{x} = A (A^T A)^{-1} A^T \vec{x} = A (I_k)^{-1}A^T \vec{x} = A A^T \vec{x}

更深层次的理解,针对标准正交基,向量在子空间的投影等于向量在每一个基向量上的投影之和:

假设向量x为Rn中的一个向量,因此:

\vec{x} = \vec{v} + \vec{w}

\Rightarrow \vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k + \vec{w}

\Rightarrow \vec{v}_i \cdot \vec{x} = c_1 \vec{v}_i \cdot \vec{v}_1 + c_2 \vec{v}_i \cdot \vec{v}_2 + \cdots + c_i \vec{v}_i \cdot \vec{v}_i + \cdots + c_k \vec{v}_i \cdot \vec{v}_k + \vec{v}_i \cdot \vec{w}

\Rightarrow \vec{v}_i \cdot \vec{x} = c_i

\Rightarrow \vec{x} = (\vec{v}_1 \cdot \vec{x}) \vec{v}_1 + (\vec{v}_2 \cdot \vec{x}) \vec{v}_2 + \cdots + (\vec{v}_k \cdot \vec{x}) \vec{v}_k + \vec{w}

\Rightarrow Proj_V \vec{x} = (\vec{x} \cdot \vec{v}_1) \vec{v}_1 + (\vec{x} \cdot \vec{v}_2) \vec{v}_2 + \cdots + (\vec{x} \cdot \vec{v}_k) \vec{v}_k

即投影等于向量在每一个基向量上的投影之和

注意:向量x不在子空间V中,如果在子空间V中,相当于坐标变换

4. 标准正交方阵基

标准正交方阵基构成的矩阵称为正交矩阵

4.1 正交矩阵转置等于逆:

C^T = C^{-1}

证明:

\underset{k \times n}{C^T} \underset{n \times k}{C} = I_k

\underset{n \times n}{C^T} \underset{n \times n}{C} = I_n

又因为:

C^{-1} C = I_n

所以:

C^T = C^{-1}

用转置矩阵代替逆矩阵,可以减少计算量

4.2 正交变换保长和保角

变换矩阵为正交矩阵的变换称为正交变换,正交变换保长和保角,即正交变换为旋转变换 (其它变换长度或夹角可能会发生变化):

\left \| C \vec{x} \right \| = \left \| \vec{x} \right \|

\cos \theta = \cos \theta_C

保长证明:

\begin{align*} \left \| C \vec{x} \right \| ^2 &= (C \vec{x}) \cdot (C \vec{x}) \\ &= (C\vec{x})^T (C\vec{x}) \\ &= \vec{x}^T C^T C \vec{x} \\ &= \vec{x}^T \vec{x} \\ &= \left \| \vec{x} \right \| ^2 \end{align*}

保角证明:

\vec{v} \cdot \vec{w} = \left \| \vec{v} \right \| \left \| \vec{w} \right \| \cos \theta

\Rightarrow \cos \theta = \frac{\vec{v} \cdot \vec{w}}{ \left \| \vec{v} \right \| \left \| \vec{w} \right \| }

向量v和向量w经过C变换后:

\Rightarrow \cos \theta _C = \frac{(C\vec{v}) \cdot (C\vec{w})}{ \left \| C \vec{v} \right \| \left \| C \vec{w} \right \|}

\Rightarrow \cos\theta _C = \frac{(C \vec{v})^T (C \vec{w}))}{\left \| \vec{v} \right \| \left \| \vec{w} \right \|} = \frac{\vec{v} \cdot \vec{w}}{\left \| \vec{v} \right \| \left \| \vec{w} \right \|} = \cos \theta

5. Gram-Schmidt过程

从普通基构造标准正交基的过程,称为schmidt过程:先将第一个列向量变成单位向量,然后根据第二个列向量在第一个列向量上的投影,求出第二个基向量,以此类推

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值