微分方程

32 篇文章 0 订阅
10 篇文章 0 订阅

学习微分方程的全部意义在于,最终我们想模拟物理系统,微分方程可以描述很多系统,现实世界中,所有的东西都不是完美的连续函数

1. 定义

什么是微分方程:包含未知函数的等式

方程:包含未知数的等式

解微分方程步骤:

1. 是否可分离变量

2. 是否是恰当微分方程

3. 一阶齐次微分方程

4. 二阶线性齐次微分方程

注意:永远不会有一种方法,可以解所有的微分方程,直到现在,还存在着不能解的微分方程;人类所知的解这些方程的唯一途径,就是用计算机求数值解,事实上,在大多数应用里,那就是最后的办法;经济学、物理学中的微分方程常常不可解,因为它们会涉及到二阶或者三阶导数,很难求出解析解,你只能求出数值解,数值解通常简单很多

2. 区别

微分方程和普通方程区别:普通方程的解是一个数或一组数;微分方程的解是一个函数或一组函数

3. 分类

微分方程有两大类:常微分方程(ODE-ordinary differential equations,未知函数及其导数关于一个变量)、偏微分方程(PDE-partial differential equations,未知函数及其导数关于多个变量)

3.1. 常微分方程

按形式分类,又分为两大类(有重叠):几阶、是否线性

按解法分类:

3.1.1. 可分离变量微分方程:可以把含x和含y的项分开,分别做积分,就可以得到微分方程的解了

\begin{align*} &\frac{dy}{dx}=\frac{x^2}{1-y^2} \\ &(1-y^2)dy=x^2dx \\ &\int(1-y^2)dy=\int x^2 dx \\ &y-\frac{1}{3}y^3 + C_y =\frac{1}{3}x^3 + C_x \\ & 3y -y^3 - x^3 = C \end{align*}

3.1.2. 恰当微分方程(exact differential equations):

理解恰当微分方程的预备知识:

偏导下的链式法则:

假设:

\psi (x,y) = \psi(x,y(x))

\psi = f_1(x)g_1(y) + \cdots + f_n(x)g_n(y)

那么:

\frac{\mathrm{d} }{\mathrm{d} x} \psi(x,y) = \frac{\partial \psi}{\partial x} + \frac{\partial \psi }{\partial y} \frac{\mathrm{d} y}{\mathrm{d} x}

证明:

\begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \psi &= f_1'(x)g_1(y) + f_1(x)g_1'(y) \frac{\mathrm{d}y}{\mathrm{d}x} \\ &+ \cdots \\ &+ f_n'(x)g_n(y) + f_n(x)g_n'(y) \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}

\frac{\mathrm{d}}{\mathrm{d}x} \psi = (f_1'(x)g_1(y) + \cdots + f_n'(x) g_n(y)) + (f_1(x) g_1'(y) + \cdots + f_n(x) g_n'(y)) \frac{\mathrm{d} y }{\mathrm{d} x }

\frac{\mathrm{d} }{\mathrm{d} x} \psi = \frac{\partial \psi}{\partial x} + \frac{\partial \psi }{\partial y} \frac{\mathrm{d} y}{\mathrm{d} x}

如果y不是x的函数,或者说y独立于x,那么dy/dx=0

偏导的另一个性质(比较像 操作符的运算):

\frac{\partial}{\partial y}( \frac{\partial}{\partial x} \psi) = \frac{\partial ^2 \psi}{\partial y \partial x} = \psi _{xy}

\frac{\partial}{\partial x}( \frac{\partial}{\partial y} \psi) = \frac{\partial ^2 \psi}{\partial x \partial y} = \psi _{yx}

如果上面两个函数(求导后的函数)是连续的,那么:

\psi_{xy} = \psi_{yx}

判断方程是否是恰当微分方程,假设

M(x,y)+N(x,y) \frac{\mathrm{d}y}{\mathrm{d}x} = 0

M(x,y)=\frac{\partial \psi}{\partial x}=\psi_x \qquad N(x,y) = \frac{\partial \psi}{\partial y} = \psi_y

那么:

\psi_{xy} = M_y \qquad \psi_{yx} = N_x

如果:

M_y = N_x \Leftrightarrow Exact \; function

方程就是恰当方程,然后根据上面的预备知识

\frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \psi(x,y) = 0

最终,恰当微分方程的解为:

\psi (x,y) = C

恰当微分方程举例:

y \cos x + 2x e^y + (\sin x + x^2 e^y -1) y^{'} = 0

let \; M = y \cos x + 2x e^y \qquad N = \sin x + x^2 e^y - 1

M_y = \cos x + 2 x e^y

N_x = \cos x + 2 x e^y

M_y = N_x \Leftrightarrow Exact \;\; function

因此该方程为恰当微分方程,它告诉我们,存在 ψ,使得:

\frac{ \mathrm{d}}{\mathrm{d}x} \psi = 0

因为(注意,下面不是用C,而是用 f(y) 代替C ):

M = \psi _x = y \cos x + 2x e^y

\int \psi _x \mathrm{d}x = \int (y \cos x + 2x e^y) \mathrm{d}x + f(y)

\psi = y \sin x + x^2 e^y + f(y)

求出 f(y) 即可求出 ψ ;为了求出f(y),我们对已求出的 ψ 求关于y的偏导数;换个符号:

\frac{\partial \psi}{\partial y} = \sin x + x^2 e^y + f'(y) = N = \sin x + x^2 e^y - 1

f'(y) = -1

f(y) = -y + C

\psi = y \sin x + x^2 e^y - y + C

最终,解出恰当微分方程:

\frac{\mathrm{d}}{\mathrm{d}x} \psi = 0 \Rightarrow y \sin x + x^2 e^y - y = C

由 ψ 再反推回原微分方程:

注意,对于含有y的部分,先求y导数,然后求y对x的导数

\begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \psi &= \frac{\mathrm{d}}{\mathrm{d}x} (y \sin x + x^2 e^y - y) \\ &= y \cos x + y' \sin x + 2x e^y + x^2 e^y y' -y' \\ &= y \cos x + 2x e^y + (\sin x + x^2 e^y - 1) y' \end{align*}

3.1.2.1. 积分因子(integrating factor)

使用积分因子 μ 的目的是,将原微分方程变成恰当微分方程。可以假设积分因子 μ 为x的函数,或y的函数,或者x,y的函数

3.1.3. 一阶微分方程

“齐次”意味着--如果f(x,y)代数上可以重写为F(y/x),那么做一个变量替换,微分方程就可分离变量了

齐次微分方程(homogeneous differential equation)

举例:

\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) = \frac{x+y}{x}

首先,它不是可分离变量微分方程,也不是恰当微分方程

其次,如果它是齐次微分方程,那么通过变量替换,可以使得方程变得可分离变量

f(x,y)=\frac{x+y}{x}=1+\frac{y}{x}

assume: \quad v = \frac{y}{x} \quad \Rightarrow \quad y = vx

\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y}{x} = 1 + \frac{y}{x}

\frac{d}{dx} (xv) = 1 + v

假设 v 也是关于 x 的函数,利用乘法法则:

v + x \frac{dv}{dx} = 1 + v

\frac{dv}{dx} = \frac{1}{x}

v = \ln |x| + C

最后将 v 重新替换为 x,y 的形式:

\frac{y}{x} = \ln |x| + C \quad \Rightarrow \quad y = x \ln |x| + xC

3.1.4. 二阶微分方程

最有用的一类微分方程

a(x) y'' + b(x) y' + c(x) y = d(x)

二阶:最高阶是二阶导数

线性:a(x),b(x),c(x),d(x) 都只是关于x的函数

齐次:d(x)=0 称为齐次,另一种形式的齐次微分方程,虽称它为齐次的,但我实在没有办法把二阶中的“齐次”与一阶齐次方程中的“齐次”联系起来,这两种“齐次”,看上去没有什么联系,我想,它们只是恰巧有一样的名字,尽管它们没有联系,至于为什么称它为“齐次”,是因为d(x)为0,事实上,我倒是看出了这种方程和均脂牛奶的联系,因为你想啊,所有齐次方程的解,它们总是等于0,所以它们总是“均脂”的,这勉强说是有点联系吧

解普遍情况之前,先处理特殊情况:

3.1.4.1 二阶线性齐次微分方程

1. a(x),b(x),c(x)都是常数,d(x)是0:

A y'' + B y' + Cy = 0

该方程的解法,可以归结为代数2的问题。

首先了解一下该方程的解的性质:

1. 假设g(x)是方程的一个解,那么c*g(x)也是方程的一个解

2. 假设h(x)也是方程的一个解,那么g(x)+h(x)也是方程的解

例子1(实根)

y'' + 5y' + 6y = 0

assume \quad y = e^{rx}

r^2 e ^{rx} + 5 r e^{rx} + 6 e ^{rx} = 0

e^{rx}(r^2 + 5r + 6) = 0

because \quad e^{rx} \neq 0

so \quad r^2 + 5r + 6 = 0

r = -2 \quad or \quad r = -3

且 r^2 + 5r + 6 = 0 称为特征方程

最终,微分方程有两个解:

y_1 = e^{-2x} \quad y_2 = e^{-3x}

又根据上面刚讲的“方程的解的性质”,微分方程的一般解为:

y = C_1 e^{-2x} + C_2 e^{-3x}

例子2(复根)

假设特征方程的根为

r = \lambda \pm \mu i

则微分方程的一般解为:

y = C_1 e^{(\lambda + \mu i)x} + C_2 e^{(\lambda - \mu i)x}

对一般解进行化简:

\begin{align*} y &= C_1e^{\lambda x} e^{\mu i x} + C_2 e^{\lambda x} e^{-\mu i x} \\ &= e^{\lambda x}(C_1 e^{\mu i x} + C_2 e^{-\mu i x}) \end{align*}

利用欧拉公式再次化简(第一次用欧拉公式、虚数来做一些有用的事,用它作为中介工具,求得一个实的,无虚数的解):

\begin{align*} y &= e^{\lambda x}(C_1 (\cos \mu x + i \sin \mu x) + C_2 (\cos (-\mu x) + i \sin(-\mu x))) \\ &= e^{\lambda x} (C_1 \cos \mu x + C_1 i \sin \mu x + C_2 \cos \mu x - C_2 i \sin \mu x) \\ &= e^{\lambda x}((C_1 + C_2) \cos \mu x + (C_1 i - C_2 i) \sin \mu x ) \\ &= e^{\lambda x} (C_3 \cos \mu x + C_4 \sin \mu x) \end{align*}

上面的公式中,假设C1 + C2 = C3, C1i - C2i = C4

例子3(重根)

假设二阶线性齐次微分方程为:

y'' + 4y' + 4y = 0

其特征方程为:

r^2 + 4r + 4 = 0

r = -2

其两个根都为-2,它的通解不是:

y = C e^{-2x}

它是一个解,但不是通解,此时需要用到“降阶法(reduction of order)”

通常解二阶常系数齐次微分方程时,ce^{rx}是一个合理猜测的解,对于重根的方程,我们猜测另一个解为g(guess),它是第一个解ce^{rx}的v(x)倍,不过这里的c的含义比较模糊,可以把它当成v(x)的一部分:

g=v(x) e^{-2x}

然后把它代回到原微分方程中,看能不能解出v:

g' = v' e^{-2x} - 2 v e^{-2x} = e^{-2x} (v' - 2v)

\begin{align*} g'' &= v'' e^{-2x} - 2 v' e^{-2x} - 2(v' e^{-2x} - 2 v e^{-2x}) \\ &= e^{-2x} (v'' - 4 v' + 4 v) \end{align*}

g'' + 4 g' + 4g = 0

e^{-2x}(v'' - 4v' + 4v + 4 v' - 8v + 4v) = 0

v'' = 0

v(x) = C_1 x + C_2

\Rightarrow g = (c_1 x + c_2) e^{-2x}

g就是真正的通解,有两个常数,可以满足两个初始条件

3.1.4.2 二阶线性非齐次微分方程

Ay'' + By' + Cy = g(x)

非齐次方程的通解,其实就是齐次方程的通解加上一个特解

假设 h(x) 是齐次方程的通解,那么:

A h'' + B h' + C h = 0

假设 j(x) 是非齐次方程的一个特解,那么:

A j'' + B j' + C j = g(x)

最终,h(x) + j(x) 是非齐次方程的通解

证明:

\begin{align*} & A (h+j)'' + B (h + j)' + C (h + j) \\ &=A (h'' + j'') + B(h' + j') + C(h + j) \\ &= (A h'' + B h' + Ch) + (A j'' + B j' + Cj) \\ &= 0 + g(x) \\ &= g(x) \end{align*}

所以 k(x) =  h(x) + j(x) 是原微分方程的通解(目前还没有证明它就是方程的所有解,但直观上先这么想吧--因为齐次方程的通解是方程的所有解,加上一个特解,得到了方程右边的g(x) )

非齐次方程,先求齐次方程的通解,然后再求出特解;求特解的方法称为“待定系数法”,即先猜出特解的形式,然后求待定系数

例子

y'' - 3 y' - 4y = 3 e^{2x}

通解为

h = C_1 e^{4x} + C_2 e^{-x}

待定系数法求特解:猜测 j(x) 为

j(x) = A e^{2x} \qquad j' = 2A e^{2x} \quad j'' = 4A e^{2x}

代入原微分方程,求出待定系数A,即求出了特解

4A e^{2x} - 3 * 2A e^{2x} - 4 * A e^{2x} = 3 e^{2x} \qquad A = - \frac{1}{2}

j(x) = - \frac{1}{2} e^{2x}

最终,原微分方程的通解为:

y = h + j = C_1 e^{4x} + C_2 e^{-x} - \frac{1}{2} e^{2x}

猜测的函数有几类:指数函数、三角函数、多项式

如果方程右边包含指数函数和三角函数等多类函数,那么特解就是指数函数和三角函数分别求特解,然后相加

 

4. 拉普拉斯变换

一个函数把一个集合映射到另一个集合,一个变换则把一族函数映射到另一族函数

拉普拉斯变换(Laplace Transform),是我们学到的最有用的概念之一

L\left \{ f(t) \right \} = F(s)

拉普拉斯变换的定义:

L \left \{ f(t) \right \} = \int _0 ^\infty e^{-st} f(t) \mathrm{d}t = \lim_{A \rightarrow \infty} \int _0 ^A e^{-st} f(t) \mathrm{d} t

为什么要写成极限的式子?因为我们不能代无穷进去算,但我们可以取极限

1. 拉普拉斯变换是线性变换(拉普拉斯是线性操作符-linear operator):

L \left \{ c_1 f(t) + c_2 g(t) \right \} = c_1 L \left \{ f(t) \right \} + c_2 L \left \{ g(t) \right \}

根据定义就可以证明

2. 导函数的拉普拉斯变换与原函数的拉普拉斯变换之间的关系:

L \left \{ f'(t) \right \} = s L \left \{ f(t) \right \} - f(0)

L \left \{ f \right \} = \frac{1}{s}(L \left \{ f' \right \} + f(0))

证明:

根据定义

L \left \{ f'(x) \right \} &= \int _0 ^{\infty} e ^{-st} f'(t) dt

根据分部积分的定义

let \quad u = e^{-st} , v' = f'(t)

u' = -s e^{-st}, v = f(t)

\begin{align*} \int _0 ^{\infty} e^{-st} f'(t)dt &= \left [ e^{-st} f(t) \right ]_0^{\infty} - \int_0^{\infty} -s e^{-st} f(t) dt \\ &= \left [ e^{-st} f(t) \right ]_0^{\infty} + s \int_0 ^{\infty} e^{-st} f(t) dt \end{align*}

假设加号+前面的表达式收敛,即 f(t) 增长的速度慢于e^{-st}衰减的速度:

\left \[ e^{-st} f(t) \right \] _0 ^{\infty} = 0 - f(0)

因此:

L \left \{ f'(t) \right \} = s L \left \{ f(t) \right \} - f(0)

L \left \{ f \right \} = \frac{1}{s}(L \left \{ f' \right \} + f(0))

4.1. 拉普拉斯变换表

指数函数、三角函数、多项式的拉普拉斯变换

L \left \{ 1 \right \} = \frac{1}{s}

L \left \{ e^{at} \right \} = \frac{1}{s-a}

L \left \{ \sin at \right \} = \frac{a}{s^2 + a^2}

L \left \{ \cos at \right \} = \frac{s}{s^2 + a^2}

L \left \{ t^n \right \} = \frac{n!}{s^{n+1}}

L \left \{ f'(t) \right \} = s L \left \{ f(t) \right \} - f(0)

L \left \{ e^{at} f(t) \right \} = \int _0 ^{\infty} e^{at} e^{-st}f(t)dt = \int _0 ^{\infty} e^{-(s-a)t} f(t) dt = F(s-a)

L \left \{ u_c(t) f(t-c) \right \} = e^{-sc} L \left \{ f(t) \right \} = e^{-sc} F(s)

L \left \{ \delta(t-c) f(t) \right \} = \int _0 ^{\infty} e^{-st} \delta(t-c) f(t) dt = e^{-sc} f(c)

L \left \{ f(t) * g(t) \right \} = F(s) G(s)

1. 原函数乘以e^{at}的拉氏变换,相当于原函数拉式变换的平移

2. u为单位阶跃函数(unit step function):

u_c(t) = \begin{cases} 0 & \text{ if } t < c \\ 1 & \text{ if } t \geq c \end{cases}

3. δ为狄拉克δ函数(Dirac delta function,它有无穷小的宽和无穷大的高,图像下的面积定义为1):

\delta(t) = \begin{cases} \infty & \text{ if } t= 0 \\ 0 & \text{ if } t \neq 0 \end{cases}

define \quad \int _{-\infty} ^{\infty} \delta(x) dx = 1

define \quad d_\tau (t) = \begin{cases} \frac{1}{2 \tau} & \text{ if } \tau < t < \tau \\ 0 & \text{ else } \end{cases}

\int _{-\tau} ^{\tau} d_{\tau} (t) dt = \frac{1}{2 \tau} \times 2\tau = 1

\lim_{\tau \rightarrow 0} d_{\tau} (t) = \delta(t)

4. 卷积定义

f(t) * g(t) = \int _0 ^t f(t-\tau) g(\tau) d \tau

举例:

\begin{align*} \sin(t) * \cos(t) &= \int _0 ^t \sin(t - \tau) \cos(\tau) d \tau \\ &= \int_0 ^t (\sin t \cos \tau - \cos t \sin \tau) \cos \tau d \tau \\ &= \int_0 ^t \sin t \cos^2 \tau d \tau - \int_0 ^t \cos t \sin \tau \cos \tau d \tau \\ &= \sin t \int_0 ^t \frac{1}{2}(\cos 2 \tau + 1) d \tau - \cos t \int_0 ^t \sin \tau \cos \tau d \tau \\ &= \frac{1}{2} t \sin t \end{align*}

 

阶跃函数拉氏变换的证明:

\begin{align*} L \left \{ u_c(t) f(t-c) \right \} &= \int _0 ^{\infty} e^{-st} u_c(t) f(t-c) dt \\ &= \int_c ^{\infty} e^{-st} f(t-c) dt \end{align*}

assume \quad t-c = x \quad \Rightarrow \quad t = x+c

\frac{d}{dx}t = \frac{d}{dx}(x+c) = 1 \quad \Rightarrow \quad dt = dx

\begin{align*} L \left \{ u_c(t) f(t-c) \right \} &= \int_c ^{\infty} e^{-st} f(t-c) dt \\ &= \int _0 ^{\infty} e^{-s(x+c)} f(x) dx \\ &= e^{-sc} \int_0 ^{\infty} e^{-sx} f(x) dx \\ &= e^{-sc} F(s) \end{align*}

4.2. 拉普拉斯逆变换

拉普拉斯逆变换:从s域变换到t域,或者说从频率域变换到时间域

拉普拉斯变换是一一对应的变换,即如果对一个函数作拉普拉斯变换,然后再作拉普拉斯逆变换,得到的还是原函数

部分分式展开(分子比分母次数低),例如

\frac{2s + 13}{(s+2)(s+3)} = \frac{A}{s+2} + \frac{B}{s+3} = \frac{A(s+3) + B(s+2)}{(s+2)(s+3)}

\Rightarrow A = 9,B=-7

通用的部分分式展开:

\begin{align*} \frac{R(x)}{G(x)} &= \frac{R(x)}{(x+2)^4(x^2+2x+3)(x^2+4)^3} \\ &= \frac{A_1}{x+2} + \frac{A_2}{(x+2)^2} + \frac{A_3}{(x+2)^3} + \frac{A_4}{(x+2)^4} \\ &+ \frac{B_0 x + C_0}{x^2 + 2x + 3} \\ &+ \frac{B_1 x + C_1}{x^2 + 4} + \frac{B_2 x + C_2}{(x^2 + 4)^2} + \frac{B_3 x + C_3}{(x^2 + 4)^3} \end{align*}

未知数的个数等于多项式的阶数,直接求解比较麻烦,可以使用“掩盖法(cover up method)”简化求解

4.3. 拉普拉斯变换在微分方程领域内的用途

拉普拉斯变换在微分方程方面的应用,直观理解比较困难,但它是一个非常有用的工具,它能把微分或积分问题转化为代数问题。如果想要理解它,需要学习傅里叶级数和傅里叶变换

注意:拉普拉斯变换是一种求解微分方程的比较通用的理论,利用拉普拉斯变换,不需要猜解,不需要猜测通解是什么形式,我们只需要做拉普拉斯变换,坦诚地说,传统方法比不上拉普拉斯变换,但因为拉普拉斯变换是线性变换,所以只能解线性微分方程

举例1,假设二阶线性非齐次微分方程为:

y'' + y = \sin2t, \quad y(0)=2, \quad y'(0)=1

对微分方程两边分别进行拉普拉斯变换(使用拉普拉斯变换的另一种写法):

s^2 Y(s) - s y(0) - y'(0) + Y(s) = \frac{2}{s^2+4}

s^2 Y(s) - 2s - 1 + Y(s) = \frac{2}{s^2+4}

Y(s) = \frac{2}{(s^2 + 1)(s^2+4)} + \frac{2s}{s^2+1} + \frac{1}{s^2+1}

使用部分分式展开:

Y(s) = \frac{5}{3} \frac{1}{s^2+1} - \frac{1}{3} \frac{2}{s^2+4} + 2 \frac{s}{s^2+1}

通过拉普拉斯逆变换,求出原函数y(t)为:

y(t) = \frac{5}{3} \sin t - \frac{1}{3} \sin 2t + 2 \cos t

举例2,拉普拉斯逆变换

\begin{align*} L^{-1} \left \{ \frac{2s}{(s^2+1)^2} \right \} &= L^{-1} \left \{ 2 \frac{1}{s^2+1} \frac{s}{s^2+1} \right \} \\ &= 2 \sin t * \cos t \\ &= t \sin t \end{align*}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值