微分方程求解及推导过程

微分方程求解及推导过程

本文将系统地推导微分方程:

d z ( t ) d t = A z ( t ) + B u ( t ) \frac{\mathrm{d}\boldsymbol{z}(t)}{\mathrm{d}t} = \boldsymbol{A}z(t) + \boldsymbol{B}u(t) dtdz(t)=Az(t)+Bu(t)

的通解过程,并分析其物理意义。

1. 初始条件和假设

设初始条件为:

z ( 0 ) = z 0 z(0) = z_0 z(0)=z0

其中, z ( t ) z(t) z(t) 是状态变量, A \boldsymbol{A} A B \boldsymbol{B} B 分别为系统的状态矩阵和输入矩阵, u ( t ) u(t) u(t) 是输入信号。

2. 拉普拉斯变换

对微分方程两边进行拉普拉斯变换,假设初始状态为 z ( 0 ) = z 0 z(0) = z_0 z(0)=z0,并利用拉普拉斯变换的性质:

L [ d z ( t ) d t ] = s Z ( s ) − z ( 0 ) \mathcal{L}\left[\frac{\mathrm{d}z(t)}{\mathrm{d}t}\right] = sZ(s) - z(0) L[dtdz(t)]=sZ(s)z(0)

得到以下频域方程:

s Z ( s ) − z 0 = A Z ( s ) + B U ( s ) sZ(s) - z_0 = \boldsymbol{A}Z(s) + \boldsymbol{B}U(s) sZ(s)z0=AZ(s)+BU(s)

其中, Z ( s ) = L [ z ( t ) ] Z(s) = \mathcal{L}[z(t)] Z(s)=L[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值