微分方程求解及推导过程
本文将系统地推导微分方程:
d z ( t ) d t = A z ( t ) + B u ( t ) \frac{\mathrm{d}\boldsymbol{z}(t)}{\mathrm{d}t} = \boldsymbol{A}z(t) + \boldsymbol{B}u(t) dtdz(t)=Az(t)+Bu(t)
的通解过程,并分析其物理意义。
1. 初始条件和假设
设初始条件为:
z ( 0 ) = z 0 z(0) = z_0 z(0)=z0
其中, z ( t ) z(t) z(t) 是状态变量, A \boldsymbol{A} A 和 B \boldsymbol{B} B 分别为系统的状态矩阵和输入矩阵, u ( t ) u(t) u(t) 是输入信号。
2. 拉普拉斯变换
对微分方程两边进行拉普拉斯变换,假设初始状态为 z ( 0 ) = z 0 z(0) = z_0 z(0)=z0,并利用拉普拉斯变换的性质:
L [ d z ( t ) d t ] = s Z ( s ) − z ( 0 ) \mathcal{L}\left[\frac{\mathrm{d}z(t)}{\mathrm{d}t}\right] = sZ(s) - z(0) L[dtdz(t)]=sZ(s)−z(0)
得到以下频域方程:
s Z ( s ) − z 0 = A Z ( s ) + B U ( s ) sZ(s) - z_0 = \boldsymbol{A}Z(s) + \boldsymbol{B}U(s) sZ(s)−z0=AZ(s)+BU(s)
其中, Z ( s ) = L [ z ( t ) ] Z(s) = \mathcal{L}[z(t)] Z(s)=L[