人脸门禁识别

一:简介

  1. 人脸识别门禁系统利用高科技的人脸识别技术,用人脸识别技术和门禁系统组构新的动态人脸识别门禁系统,将传统的钥匙开门替换为人脸“钥匙”开门。此“钥匙”唯一且不会丢失,让您安心的带脸出门,带脸上班,带脸回家。
  2. 适用于办公区域、酒店、通道闸机、写字楼、学校、商场、商店、社区、公共服务及管 理项目等需要用到人脸门禁的场所。
    在这里插入图片描述

二:软件安装

  1. 插上固定IP网线,可设置固定IP
  2. 连接上电源开机状态方可正常使用

三:设备基本功能

  1. 人员同步:进行人员和人脸的增删查改
  2. 人脸注册方式:照片注册、拍照注册、特征注册
  3. 识别记录:人脸识别记录信息
  4. 识别方式:刷卡、认证对比、卡+人脸双重认证
  5. 基本设备控制:重启、开门、同步时间、清空数据、设置网络连接等操作
  6. 基本信息配置:设备命令、人脸识别距离、语言模式、显示模式、logo、是否开启活体识别
  7. 认证条件配置:识别间距、人员有效期设置、人员一周7天权限设置、人员每天识别时间段+识别次数设置
在Python中,人脸门禁识别通常涉及到使用计算机视觉库(如OpenCV和Dlib)以及深度学习框架(如TensorFlow或PyTorch),特别是面部识别模型,比如FaceNet、MTCNN或者dlib自带的人脸检测器配合深度学习库中的预训练模型。 以下是一个简化的步骤和代码示例: 1. **安装依赖库**: ```bash pip install opencv-python dlib numpy tensorflow keras ``` 2. **人脸检测**: 使用Dlib库中的`face_recognition_hog`或`face_recognition_resnet`函数来检测人脸: ```python import cv2 import dlib face_detector = dlib.get_frontal_face_detector() ``` 3. **面部特征提取**: 使用预训练模型(如OpenCV的人脸识别模型或者从TensorFlow Hub加载预训练模型)提取人脸特征: ```python from tensorflow.keras.models import load_model model = load_model('path_to_pretrained_model.h5') ``` 4. **人脸识别**: 将检测到的人脸特征与已知的数据库进行比对,决定是否允许进入: ```python def recognize_face(image, known_faces): # 从图像中提取特征 face_features = model.predict(face_detector(image, 1)) # 与已知人脸比较,找到最相似的 best_match = min(known_faces, key=lambda x: np.linalg.norm(x - face_features)) if np.linalg.norm(best_match - face_features) < threshold: # 设置阈值 return True # 允许进入 else: return False # 不允许进入 ``` 5. **应用到门禁系统**: 将上述函数集成到门禁系统的控制逻辑中,当摄像头捕获到人脸时调用`recognize_face`函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值