深度学习简介

本文介绍了深度学习自1958年以来的发展历程,强调了2012年以来在图像识别和语音识别领域的广泛应用。文章通过神经网络的示例解释了其工作原理,包括输入、隐藏和输出层,以及如何通过激活函数进行计算。此外,还概述了深度学习在图片分类任务中的应用,并解释了评估模型性能的交叉熵损失函数,最后提到了梯度下降法在优化模型参数中的作用。
摘要由CSDN通过智能技术生成
  • 深度学习的发展趋势以及应用领域

图1

        深度学习从2012年~2016年期间,使用的人数呈现上升的趋势。同时,深度学习可以被应用于很多领域:Android, NLP, 语音识别等。

  • 深度学习的发展历程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值