卷积神经网络
文章平均质量分 63
gwpscut
越努力,越幸运
展开
-
查看卷积网络每一层的feature map的代码
import osimport sysimport pdbimport loggingimport timeimport torchimport argparseimport numpy as npimport torch.nn as nnimport torch.nn.functional as Ffrom collections import OrderedDicti...原创 2019-09-26 14:53:14 · 1286 阅读 · 2 评论 -
论文阅读笔记之——《Deep Stacked Hierarchical Multi-patch Network for Image Deblurring》
论文:https://arxiv.org/pdf/1904.03468v1.pdf本文是做非均匀deblur的。The goal of non-uniform blind image deblurring is to remove the undesired blur caused by the camera motion and the scene dynamics开篇作者抛出来两个问题...原创 2019-06-20 16:52:16 · 3002 阅读 · 0 评论 -
《Multi-Scale Residual Learning-using a Cycle Spinning CNN for Single Image De-Raining》
de-raining跟超分一样,应该都属于low-levelvision的问题。之前的博客《论文阅读笔记之——《Moiré Photo Restoration Using Multiresolution Convolutional Neural Networks》》介绍的去摩尔纹应该也算是同类型的问题。一开始我认为,这类型的任务跟去噪任务非常像。Single image de-raini...原创 2019-06-20 16:29:06 · 1080 阅读 · 0 评论 -
《Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification》
引言多label的图像分类是一个基础且具有挑战性的task。然而传统的方法难以对multi-label图像中的label之间的潜在空间关系进行建模。由于通常不提供标签的空间注释。本文利用标签之间的语义和空间关系,只进行图像级监督。Spatial Regularization Network (SRN)产生所有labels的attention map,并且通过可学习卷积来获取他们之间潜在...原创 2019-06-03 17:03:35 · 1104 阅读 · 0 评论 -
实验笔记之——《Multi-scale Location-aware Kernel Representation for Object Detection》复现
实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars本博文为论文《Multi-scale Location-...原创 2019-06-19 11:00:37 · 881 阅读 · 0 评论 -
《Multi-Context Attention for Human Pose Estimation》
本文提出多语义attention机制。采用堆叠的hourglass networks来产生不同分辨率不同语义的特征下的attention map,而CRF(Conditional Random Field)用于对attention map里面的相邻的区域进行建模。进一步地,作者结合holistic (整体) attention model(关注于整个人体的一致性)以及body part atten...原创 2019-06-03 13:20:06 · 511 阅读 · 0 评论 -
《Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation》
这篇博文是深度估计(单目深度估计)也是收到multi scale CNN 的启发,提出网络可以fuses complementary information derived from multiple CNN side outputsthe integration (融合) is obtained by means of continuous Conditional Random Fiel...原创 2019-06-02 16:16:17 · 788 阅读 · 0 评论 -
《Learning Deep Structured Multi-Scale Features using Attention-Gated CRFs for Contour Prediction》
本博文为阅读笔记由于最近要阅读大量的论文,仅仅以简略的方式记录论文的阅读笔记。本文是关于(contour detection)轮廓检测本文的两个亮点:1、multi-scale feature generation and fusion。产生更丰富和互补的表示的hierarchical deep model(分层深层模型)2、为了细化和牢固地融合在不同尺度上学习到的特征,本文...原创 2019-05-31 15:53:22 · 663 阅读 · 2 评论 -
paper survey(2019.06.05)——卷积网络feature map的传递与利用
最近阅读大量的paper来寻找突破点,就不打算一篇一篇的写博文的,直接记录于此(比较有意思的paper会独立出来博客)目录《Scale-Transferrable Object Detection》《Weakly Supervised Phrase Localization with Multi-Scale Anchored Transformer Network》《Fact...原创 2019-06-05 19:05:14 · 4920 阅读 · 0 评论 -
论文阅读笔记之——《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》RCAN
先给出论文的链接http://openaccess.thecvf.com/content_ECCV_2018/papers/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.pdf论文的代码https://github.com/yulunzhang/RCAN复现的代码在博客《实验笔记之——Channel Attention(R...原创 2019-05-30 16:38:10 · 8801 阅读 · 0 评论 -
Dilated Convolution (空洞卷积或扩张卷积)
之前博文已经对空洞卷积做了介绍,本文进行深入介绍《各种卷积层的理解(深度可分离卷积、分组卷积、扩张卷积、反卷积)》诞生背景,在图像分割领域,图像输入到CNN(典型的网络比如FCN[3])中,FCN先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分割预测是pixel-wise的输出,所以要将pooling后较小的图像尺寸upsampling到原始...原创 2019-05-18 18:01:29 · 10166 阅读 · 1 评论 -
论文阅读笔记之——《FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction》
本文是对欧阳老师的paper的阅读笔记先给出论文的地址http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf论文代码https://github.com/kevin-ssy/FishNet论文讨论的问题就是:对于区域或...原创 2019-05-30 13:47:24 · 1554 阅读 · 0 评论 -
实验笔记之——octave layer(4路数据)
本博文为将octave layer改为四路数据的实验记录实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars...原创 2019-05-27 10:20:36 · 453 阅读 · 0 评论 -
论文阅读笔记之——《PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation》
先给出论文的链接(https://arxiv.org/pdf/1812.11788.pdf)论文主页,包括了一个实时AR demo:https://zju3dv.github.io/pvnet/论文代码:https://github.com/zju3dv/pvnet作者还开源了他们用blender合成数据代码:https://github.com/zju3dv/pvnet-render...原创 2019-05-13 17:09:07 · 13191 阅读 · 5 评论 -
实验笔记之——octave conv (double pooling)
本博文类似于博文《实验笔记之——octave conv (without pooling)》唯一不同的是,本博文是采用4倍的scale(ocatve 采用2倍scale)代码###########################################################################################################...原创 2019-05-13 13:05:07 · 730 阅读 · 1 评论 -
论文阅读笔记之——《Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring》
论文:https://arxiv.org/pdf/1612.02177.pdf代码:https://github.com/SeungjunNah/DeepDeblur_release代码解读https://blog.csdn.net/wm6274/article/details/71194225数据集下载链接在上面的github里面we propose a multi-sca...原创 2019-06-21 10:47:13 · 5493 阅读 · 2 评论 -
paper survey(2019.06.11)——卷积网络高阶特征表示
类似于博文《paper survey(2019.06.05)——卷积网络feature map的传递与利用》本博文也是系列论文的阅读笔记(基本都是CVPR和ICCV的论文)。对于跟本博文相关的论文会展开描述,对于不相关的仅仅列出题目。目录《G2DeNet: Global Gaussian Distribution Embedding Network and Its Appl...原创 2019-06-11 15:17:16 · 9850 阅读 · 1 评论 -
实验记录之——SRResNet、CARN、RRDB、RCAN复现代码
python train.py -opt options/train/train_sr.jsonpython3 test.py -opt options/test/test_sr.jsonsource activate pytorchtensorboard --logdir tb_logger/ --port 6008http://172.20.36.203:6008/#sca...原创 2019-08-18 12:12:50 · 5258 阅读 · 1 评论 -
stride_OctaveConv
####################class stride_OctaveConv(nn.Module): def __init__(self, in_nc, out_nc, kernel_size, alpha=0.5, stride=1, dilation=1, groups=1, \ bias=True, pad_type='zero'...原创 2019-07-21 16:33:32 · 226 阅读 · 0 评论 -
论文阅读笔记之——《Image Restoration via Residual Non-local Attention Networks》
先给出paper的链接:https://arxiv.org/pdf/1903.10082v1.pdf代码:https://github.com/yulunzhang/RNAN这篇论文感觉跟SAN的骨架有点类似,相对于SAN用了一个协方差pooling,而这篇论文仅仅加了non-local的结构。但是所设计的Trunk 分支和mask分支或许可以进一步讨论两个分支的交互的意义...原创 2019-07-30 10:49:07 · 3483 阅读 · 0 评论 -
实验笔记之——multi-SR
###############################################################################################Multi-scale SRclass MSSR(nn.Module): def __init__(self, in_nc, out_nc, nf=64, ng=10, nb=20, red...原创 2019-07-20 08:13:22 · 261 阅读 · 0 评论 -
论文阅读笔记之——《Compact Bilinear Pooling》
感觉跟之前看过的论文《实验笔记之——《Multi-scale Location-aware Kernel Representation for Object Detection》复现》很类似,通过kernel的近似来实现高维特征的提取虽然bilinear 模型取得较好的performance,但是它的成本高(运算量、存储量)。为此作者提出一种紧凑型的bilinear modelOur pr...原创 2019-07-10 14:28:18 · 3330 阅读 · 1 评论 -
论文阅读笔记之——《Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks》
最近在研究attentionmechanism,感觉缺点之一就是增加较大的运算量。突然看到一篇微信推文说同时几乎不增加参数量和计算量的情况下也能让分类与检测性能得到极强的增益。论文链接:https://arxiv.org/pdf/1905.09646.pdf代码链接https://github.com/implus/PytorchInsight(里面还有各种attention实现)...原创 2019-07-04 11:50:28 · 3048 阅读 · 0 评论 -
论文阅读笔记之——《Bilinear CNNs for Fine-grained Visual Recognition》
双线性定义:包含两个特征提取器,其输出经过外积(外积WiKi)相乘、池化后获得图像描述子。通常情况下,在精细化的分类问题中,有两种方法:一是part-based model,通过定位关键部位并提取特征。二是holistic models,这种方式在整张图片上构造特征。the accuracy of deep networks can be improved significantly by...原创 2019-07-09 17:04:30 · 2162 阅读 · 0 评论 -
paper survey(2019.06.23)——Multi-Scale
类似于之前的paper调研的论文,本博文主要是对于multi-scale在low-level-vision中的应用做调研《Down-Scaling with Learned Kernels in Multi-Scale Deep Neural Networks for Non-Uniform Single Image》论文开篇提到“Multi-scale approach...原创 2019-06-23 17:02:40 · 1557 阅读 · 0 评论 -
学习笔记之——双线性汇合(bilinear pooling)
本博文为学习笔记,博文的内容来自网上各种资料,在文末给出引用,本博文不作任何商业用途,仅供本人学习记录细粒度图像分类旨在同一大类图像的确切子类。由于不同子类之间的视觉差异很小,而且容易受姿势、视角、图像中目标位置等影响,这是一个很有挑战性的任务。因此,类间差异通常比类内差异更小。双线性汇合(bilinear pooling)计算不同空间位置的外积,并对不同空间位置计算平均汇合以得...原创 2019-06-23 14:44:18 · 9206 阅读 · 0 评论 -
论文阅读笔记之——《CRRN: Multi-Scale Guided Concurrent Reflection Removal Network》
In this paper, we propose the Concurrent Reflection Removal Network (CRRN) to tackle this problem in a unified framework.Reflections observed in front of the glass significantly degrade the visibili...原创 2019-06-17 22:49:45 · 1043 阅读 · 1 评论 -
论文阅读笔记之——《Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting》
开篇先放张图片。虽然我之前没有了解过inpainting的任务,但是感觉能做得效果如此好,真的非常厉害了。至少人眼没那么容易区分出修补的部分In this paper, we propose a Pyramid-context ENcoder Network (PEN-Net) for image inpainting by deep generative models.we prop...原创 2019-06-21 20:01:32 · 4049 阅读 · 0 评论 -
论文阅读笔记之——《CBAM: Convolutional Block Attention Module》
目录Attention MechanismChannel attention moduleSpatial attention module论文:https://arxiv.org/pdf/1807.06521.pdf代码实现:https://github.com/luuuyi/CBAM.PyTorchhttps://github.com/JunrQ/backbo...原创 2019-06-25 15:44:47 · 1033 阅读 · 1 评论 -
实验笔记之——Channel Attention(RCAN的复现)
实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars首先给出论文《Image Super-Resolu...原创 2019-06-17 13:46:17 · 13025 阅读 · 4 评论 -
论文阅读笔记之——《Scale-recurrent Network for Deep Image Deblurring》
论文链接:https://arxiv.org/pdf/1802.01770.pdf代码:https://github.com/jiangsutx/SRN-Deblur在本论文中,我们探索了一种用于多尺度图像去模糊的更有效的网络结构。我们提出了一种新的尺度循环网络(SRN:scale-recurrent network)(we explore a more effective network...原创 2019-06-21 11:35:19 · 5064 阅读 · 1 评论 -
实验笔记之——基于DWT的octave layer(DWT在pytorch中实现)
之前的博文《论文阅读笔记之——《Multi-level Wavelet-CNN for Image Restoration》及基于pytorch的复现》曾经研究过WMCNN。本博文就是采用DWT变换代替octave中的pooling代码类似于博文《实验笔记之——octave conv (without pooling)》对octave layer的结构进行改进如下:pytorch中实现...原创 2019-05-13 11:09:34 · 5211 阅读 · 2 评论 -
实验笔记之——参数量为0.1M的超分网络(octave layer)
本博文为实验笔记实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars参数量为176,234参数量为1...原创 2019-05-21 15:40:29 · 839 阅读 · 0 评论 -
论文阅读笔记之——《Learning a Discriminative Prior for Blind Image Deblurring》
先给出论文链接(https://arxiv.org/pdf/1803.03363v1.pdf)本文是关于盲去模糊问题。之前做了很长一段时间的盲复原,始终没有得到很好的inspiration,希望这篇论文能有所启发~本文基于data-driven discriminative prior.(数据驱动的先验鉴别),将imageprior作为二进制分类器(CNN),先验的学习(learned ...原创 2019-05-10 20:03:41 · 3181 阅读 · 2 评论 -
论文阅读笔记之——《Practical Signal-Dependent Noise Parameter Estimation From a Single Noisy Image》
噪声水平估计对于非盲去噪方法是至关重要的,噪声水平估计质量直接影响去噪的质量。一般认为图像的噪声都是零均值噪声,所谓的噪声水平估计就是通过单张噪声图像估计高斯噪声的方差(或标准差)噪声的分类高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指...原创 2018-12-14 14:59:08 · 2511 阅读 · 0 评论 -
论文阅读笔记之——《Toward Convolutional Blind Denoising of Real Photographs》及基于pytorch的CBDNet的复现
本文是CBDNet(convolutional blind denoising network)的阅读笔记。本博文分为两块,一块是阅读笔记,一块是本人对CBDNet的实验记录论文链接:https://arxiv.org/pdf/1807.04686.pdf论文的代码:https://github.com/GuoShi28/CBDNet一些去噪用的数据集https://blog.csdn...原创 2018-12-06 19:31:51 · 6523 阅读 · 14 评论 -
论文阅读笔记——《FFDNet Toward a Fast and Flexible Solution for CNN based Image Denoising》
本博文属于阅读笔记,仅供本人学习理解用论文链接:https://ieeexplore.ieee.org/abstract/document/8365806给出代码(https://github.com/cszn/FFDNet) Many methods mostly learn a specific model for each noise level, and require m...原创 2018-12-06 15:34:41 · 9611 阅读 · 5 评论 -
论文阅读笔记之——《Multi-level Wavelet-CNN for Image Restoration》及基于pytorch的复现
本博文是MWCNN的阅读笔记,论文的链接:https://arxiv.org/pdf/1805.07071.pdf代码:https://github.com/lpj0/MWCNN(仅仅是matlab代码)通过参考代码,对该网络在pytorch框架下进行复现 网络结构如下图所示incorporating residual block in each level of the ...原创 2018-12-06 13:18:17 · 15205 阅读 · 7 评论 -
基于pytorch的ESRGAN(论文阅读笔记+复现)
代码的框架——《https://github.com/xinntao/BasicSR》ESRGAN论文《ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks》的链接——https://arxiv.org/pdf/1809.00219.pdf代码在目录/home/guanwp/BasicSR-master/code...原创 2018-12-05 18:27:44 · 9843 阅读 · 9 评论 -
实验——基于pytorch的SRGAN的复现
代码的框架仍然是——《https://github.com/xinntao/BasicSR》原理先再次缕一缕SRGAN的loss。本部分主要是对于《Photo-Realistic Single Image Super-Resolution Using a Generative AdversarialNetwork》第二部分的理解SRGAN的目标就是利用G网络来作为SR网络。所以目标就...原创 2018-12-03 16:59:26 · 12707 阅读 · 2 评论