本博文记录本文测试DPVO的过程,本博文仅供本人学习记录用~
代码链接:GitHub - princeton-vl/DPVO: Deep Patch Visual Odometry
目录
配置过程
首先下载代码以及创建conda环境
git clone https://github.com/princeton-vl/DPVO.git --recursive
cd DPVO
conda env create -f environment.yml
conda activate dpvo
然后安装eigen以及下载DPVO对应的模型及数据,同时安装DPVO
wget https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.zip
unzip eigen-3.4.0.zip -d thirdparty
# install DPVO
pip install .
# download models and data (~2GB)
./download_models_and_data.sh
安装成功~
可视化工具,采用Pangolin Viewer
./Pangolin/scripts/install_prerequisites.sh
mkdir Pangolin/build && cd Pangolin/build
cmake ..
make -j8
sudo make install
cd ../..
然后安装viewer
pip install ./DPViewer
采用MobaXterm来运行下面代码从而观看demo
conda activate dpvo
python demo.py \
--imagedir=<path to image direc