实验笔记之——DPVO(Deep Patch Visual Odometry)

本博文记录本文测试DPVO的过程,本博文仅供本人学习记录用~

《Deep Patch Visual Odometry》

代码链接:GitHub - princeton-vl/DPVO: Deep Patch Visual Odometry

目录

配置过程

测试记录

代码解读

参考资料


配置过程

首先下载代码以及创建conda环境

git clone https://github.com/princeton-vl/DPVO.git --recursive
cd DPVO

conda env create -f environment.yml
conda activate dpvo

然后安装eigen以及下载DPVO对应的模型及数据,同时安装DPVO

wget https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.zip
unzip eigen-3.4.0.zip -d thirdparty

# install DPVO
pip install .

# download models and data (~2GB)
./download_models_and_data.sh

安装成功~

可视化工具,采用Pangolin Viewer

./Pangolin/scripts/install_prerequisites.sh
mkdir Pangolin/build && cd Pangolin/build
cmake ..
make -j8
sudo make install
cd ../..

然后安装viewer

pip install ./DPViewer

采用MobaXterm来运行下面代码从而观看demo

conda activate dpvo

python demo.py \
    --imagedir=<path to image direc
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值