3D Gaussian Splatting (3DGS)
文章平均质量分 91
3D Gaussian Splatting相关技术博客~
gwpscut
越努力,越幸运
展开
-
学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研
论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作,它的特点在于重建质量高的情况下还能接入传统光栅化,优化速度也快(能够在较少的训练时间,实现SOTA级别的NeRF的实时渲染效果,且可以以 1080p 分辨率进行高质量的实时(≥ 30 fps)新视图合成)。开山之作就是论文“3D Gaussian Splatting for Real-Time Radiance Field Rendering”是2023年SIGGRAPH最佳论文。原创 2024-01-09 23:01:10 · 15655 阅读 · 5 评论 -
Paper Survey——3DGS-SLAM
最近对一系列基于3D Gaussian Splatting(3DGS)SLAM的工作的源码进行了测试与解读。为此写下本博客mark一下所有的源码解读以及对应的代码配置与测试记录~其中工作1~5的原理解读见博客:学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研_3d gaussian splatting slam-CSDN博客。但由于其相关工作太多了,为此,用本博文记录下对这些工作的调研(以PPT图片的形式)。原创 2024-05-30 11:28:57 · 1153 阅读 · 3 评论 -
学习笔记之——2D Gaussian Splatting(2DGS)
Surfels(surface elements)是体积渲染文献中的“表面元素”或“表面体素”。其他人将其描述为零维n元组,其形状和阴影属性局部近似于对象表面。对象可以由一组密集的点(表面)表示,这些点(表面)保存照明信息。其表达如下:基于surfels的方法基本上都需要几何的GT、深度信息或者在光照已知的场景下才能运行。而2DGS将其结合起来。原创 2024-05-28 15:53:01 · 7444 阅读 · 5 评论 -
学习笔记之——3DGS-SLAM系列代码解读
最近对一系列基于3D Gaussian Splatting(3DGS)SLAM的工作的源码进行了测试与解读。为此写下本博客mark一下所有的源码解读以及对应的代码配置与测试记录~其中工作1~5的原理解读见博客:学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研_3d gaussian splatting slam-CSDN博客。原创 2024-04-11 15:50:15 · 4492 阅读 · 2 评论 -
实验笔记之——RGBD GS-ICP SLAM配置与测试
RGBD GS-ICP SLAM》是最新开源的一个3DGS-SLAM工作,通过利用GICP来实现当前帧gaussian与已mapping的gaussian进行匹配进行位姿的估算,并通过关键帧的选择策略来进一步提升performance~该工作取得了较好的tracking以及渲染的性能,同时FPS可高达107详细的原理此处不做介绍,本博文记录本人配置以及测试该算法的过程,并且mark对代码的解读的github仓库。本博文仅供本人学习记录用~原创 2024-04-11 15:36:31 · 3734 阅读 · 20 评论 -
学习笔记之——3D Gaussian Splatting源码解读
高斯模型的初始化,初始化过程中加载或定义了各种相关的属性使用的球谐阶数、最大球谐阶数、各种张量(_xyz等)、优化器和其他参数。self.active_sh_degree = 0 #球谐阶数self.max_sh_degree = sh_degree #最大球谐阶数# 存储不同信息的张量(tensor)self._xyz = torch.empty(0) #空间位置self._scaling = torch.empty(0) #椭球的形状尺度。原创 2024-01-10 15:54:30 · 29799 阅读 · 16 评论 -
实验笔记之——Gaussian-SLAM测试与配置
之前博客对基于3DGS的进行了调研学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研_3d gaussian splatting slam-CSDN博客论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作,它的特点在于重建质量高的情况下还能接入传统光栅化,优化速度也快(能够在较少的训练时间,实现SOTA级别的NeRF的实时渲染效果,且可以以 1080p 分辨率进行高质量的实时(≥ 30 fps)新视图合成)。原创 2024-04-07 15:57:07 · 2174 阅读 · 3 评论 -
实验笔记之——Gaussian Splatting SLAM (MonoGS)配置与测试
之前博客对基于3DGS的SLAM进行了调研学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研_3d gaussian splatting slam-CSDN博客论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作,它的特点在于重建质量高的情况下还能接入传统光栅化,优化速度也快(能够在较少的训练时间,实现SOTA级别的NeRF的实时渲染效果,且可以以 1080p 分辨率进行高质量的实时(≥ 30 fps)新视图合成)。原创 2024-03-06 21:01:54 · 4704 阅读 · 12 评论 -
学习笔记之——3D Gaussian SLAM,SplaTAM配置(Linux)与源码解读
SplaTAM全称是《SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM》,是第一个(也是目前唯一一个)开源的用3D Gaussian Splatting(3DGS)来做SLAM的工作。在下面博客中,已经对3DGS进行了调研与学习。其中也包含了SplaTAM算法的基本介绍。学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研-CSDN博客。原创 2024-01-18 12:39:59 · 9852 阅读 · 15 评论 -
实验笔记之——基于TUM-RGBD数据集的SplaTAM测试
后面有时间再试试用手机实测来看看吧,不过目前看来用数据集测试的效果都比较差,实时性也很一般,比如rgbd_dataset_freiburg1_desk序列都训练30多分钟了,PSNR还只有21左右,应该3DGS性能不至于这样,可能是因为一些参数的设置包括剪枝等等的操作吧~感觉还是有比较大可以研究的空间~原创 2024-01-18 13:27:47 · 2975 阅读 · 3 评论 -
实验笔记之——基于COLMAP的Instant-NGP与3D Gaussian Splatting的对比
之前博客进行了COLMAP在服务器下的测试实验笔记之——Linux实现COLMAP-CSDN博客学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。原创 2024-01-05 22:08:44 · 4782 阅读 · 1 评论 -
实验笔记之——基于windows复现Instant-NGP
之前博客对NeRF-SLAM进行了调研,本博文先复现一下Intant-NGP。学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。原创 2024-01-02 15:55:28 · 2499 阅读 · 0 评论 -
实验笔记之——Linux实现COLMAP
学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。之前博客跑instant-NGP的时候,除了用官方的数据集,用自己的数据则是通过手机采集,同时获得pose与image。原创 2024-01-04 18:16:51 · 2656 阅读 · 1 评论 -
实验笔记之——Ubuntu20.04配置nvidia以及cuda并测试3DGS与SIBR_viewers
之前博文测试3DGS的时候一直用服务器进行开发,没有用过笔记本,本博文记录下用笔记本ubuntu20.04配置过程~学习笔记之——3D Gaussian Splatting源码解读_3dgs运行代码-CSDN博客高斯模型的初始化,初始化过程中加载或定义了各种相关的属性使用的球谐阶数、最大球谐阶数、各种张量(_xyz等)、优化器和其他参数。原创 2024-02-29 11:11:19 · 4425 阅读 · 1 评论 -
实验笔记之——Gaussian Splatting
之前博客对NeRF-SLAM进行了调研学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。原创 2024-01-03 15:08:05 · 5764 阅读 · 7 评论 -
实验笔记之——基于Linux服务器复现Instant-NGP及常用的tmux指令
学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。配置好后,通过./instant-ngp或者scripts/run.py就可以运行了。这个编译好像比较耗费时间~原创 2024-01-03 16:04:51 · 1047 阅读 · 1 评论 -
学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)
NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。为了实现这一目的,NeRF 使用用神经网络作为一个 3D 场景的隐式表达,代替传统的点云、网格、体素、TSDF 等方式,通过这样的网络可以直接渲染任意角度任意位置的投影图像。原创 2023-12-29 14:38:29 · 8194 阅读 · 5 评论