模仿akshare方法,利用python获取期权期货数据

本文介绍了一个Python程序,通过模仿akshare库的方法,利用requests库从东方财富网站抓取期权和期货市场价格数据,旨在支持量化分析研究。
摘要由CSDN通过智能技术生成

本文模仿akshare中的方法,利用python的request提取东方财富网站的期权、期货数据,可用于量化研究,

代码如下:

import json

import requests

import pandas as pd

#输出显示设置

import warnings

pd.set_option('display.max_rows',None)

pd.set_option('display.max_columns',None)

pd.set_option('expand_frame_repr',False)

pd.set_option('display.unicode.ambiguous_as_wide',True)

pd.set_option('display.unicode.east_asian_width',True)

warnings.filterwarnings("ignore")

def option_current_em() -> pd.DataFrame:

    """

    东方财富网-行情中心-期权市场

    https://quote.eastmoney.com/center/qqsc.html

    :return: 期权价格

    :rtype: pandas.DataFrame

    """

    url = 'http://77.push2.eastmoney.com/api/qt/clist/get'

    params = {

        'pn': '1',

        'pz': '200000',

        'po': '1',

        'np': '1',

        'ut': 'bd1d9ddb04089700cf9c27f6f7426281',

        'fltt': '2',

        'invt': '2',

        'fid': 'f3',

        'fs': 'm:10,m:140,m:141,m:151',

        'fields': 'f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f28,f11,f62,f128,f136,f115,f152,f133,f108,f163,f161,f162',

        '_': '1606225274063',

    }

    r = requests.get(url, params=params)

    data_json = r.json()

    temp_df = pd.DataFrame(data_json['data']['diff'])

    temp_df.columns = [

        '_',

        '最新价',

        '涨跌幅',

        '涨跌额',

        '成交量',

        '成交额',

        '_',

        '_',

        '_',

        '_',

        '_',

        '代码',

        '市场标识',

        '名称',

        '_',

        '_',

        '今开',

        '_',

        '_',

        '_',

        '_',

        '_',

        '_',

        '_',

        '昨结',

        '_',

        '持仓量',

        '_',

        '_',

        '_',

        '_',

        '_',

        '_',

        '_',

        '行权价',

        '剩余日',

        '日增'

    ]

    temp_df = temp_df[[

        '代码',

        '名称',

        '最新价',

        '涨跌额',

        '涨跌幅',

        '成交量',

        '成交额',

        '持仓量',

        '行权价',

        '剩余日',

        '日增',

        '昨结',

        '今开',

        '市场标识',

    ]]

    temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors='coerce')

    temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额'], errors='coerce')

    temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors='coerce')

    temp_df['成交量'] = pd.to_numeric(temp_df['成交量'], errors='coerce')

    temp_df['成交额'] = pd.to_numeric(temp_df['成交额'], errors='coerce')

    temp_df['持仓量'] = pd.to_numeric(temp_df['持仓量'], errors='coerce')

    temp_df['行权价'] = pd.to_numeric(temp_df['行权价'], errors='coerce')

    temp_df['剩余日'] = pd.to_numeric(temp_df['剩余日'], errors='coerce')

    temp_df['日增'] = pd.to_numeric(temp_df['日增'], errors='coerce')

    temp_df['昨结'] = pd.to_numeric(temp_df['昨结'], errors='coerce')

    temp_df['今开'] = pd.to_numeric(temp_df['今开'], errors='coerce')

    return temp_df

def future_current_em(market='上期所') -> pd.DataFrame:

    """

    东方财富网-行情中心-期货市场-上期所

    https://quote.eastmoney.com/center/gridlist2.html#futures_113

    :return: 期货价格

    :rtype: pandas.DataFrame

    """

    mk_dict={'上期所':113,'大商所':114,'郑商所':115,'上期能源':142,'中金所':220}

    market_code=mk_dict[market]

    url = 'https://futsseapi.eastmoney.com/list/{}'.format(market_code)

    params = {  #拷贝payload(负载)参数如下:

                'callback': 'aaa_callback',

                'orderBy': 'zdf',

                'sort': 'desc',

                'pageSize': '20000',#设置一个足够大数据,一次提取所有数据

                'pageIndex': '0',#如果非0,修改为0,一次提取所有数据

                'callbackName': 'aaa_callback',

                'token': '58b2fa8f54638b60b87d69b31969089c', #可以删除,不影响

                'field': 'dm,sc,name,p,zsjd,zde,zdf,f152,o,h,l,zjsj,vol,cje,wp,np,ccl',

                'blockName': 'callback', #可以删除,不影响

                '_': '1714487033740',  #可以删除,不影响

            }

           

    r = requests.get(url, params=params)

    jsonDecoder=json.decoder.JSONDecoder()

    data=jsonDecoder.decode(r.text[13:-1])['list']

    temp_df = pd.DataFrame(data)

    temp_df.columns = [#原始列名顺序

                        '卖盘(内盘)', '最高','代码','zsjd','最低','持仓量','今开','最新价',

                        '市场标识','成交量','名称','买盘(外盘)','涨跌额','涨跌幅','昨结','成交额',

                       ]  

    temp_df=temp_df[['代码','名称','最新价','涨跌额','涨跌幅','今开','最高','最低','昨结',

                     '成交量','成交额','买盘(外盘)','卖盘(内盘)','持仓量']]#重新排列名顺序

    return temp_df

if __name__ == '__main__':

    df=future_current_em(market='上期所')

    print(df)   

    df_option=option_current_em()

    print(df_option.head())

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值