图论的基础知识

有向图

加权有向图 G 可以用 ( V , E ) (V,E) (V,E)来表示,在这里 V = { 1 , 2 , ⋯ , n } V=\{1,2,⋯,n\} V={1,2,,n} 代表图的非空点集, E = { ( i , j ) , i , j ∈ V , i ≠ j } E=\{(i,j),i,j∈V,i≠j\} E={(i,j),i,jV,i̸=j} 代表图的边集。图 G 中的有向边 ( i , j ) ∈ E (i,j)∈E (i,j)E 意味着点 i 能接收到点 j 的数据,但是反过来不一定能满足。在有向图 G 中, 存在一系列有顺序的从点 i 到点 j 的边: ( i , i 1 ) , ( i 1 , i 2 ) , ⋯ , ( i c , j ) (i,i_1 ),(i_1,i_2 ),⋯,(i_c,j) (i,i1)(i1,i2)(ic,j) ,也就是说从点 i 到点 j 是有向的。如果有向图中的每一对点之间都存在一个有向路径,那么这个有向图称作是强连接图。如果有向图中的存在一个根节点,从这个根节点出发到其他任意一点都存在一个有向路径,那么就称这个有向图存在一个有向生成树。

无向图

对于无向图 G,只有任意两节点间都有相连,才称作是连通图。

矩阵

1.邻接矩阵

图 G 的邻接矩阵 A 定义为: A = ( a i j ) ∈ R n × n A =(a_{ij} )∈R^{n×n} A=(aij)Rn×n。 如果 ( i , j ) ∈ E (i,j)∈E (i,j)E a i j > 0 a_{ij}>0 aij>0 ;如果 ( i , j ) ∉ E (i,j)∉E (i,j)/E 或者 i = j i=j i=j a i j = 0 a_{ij}=0 aij=0。 The in-degree of node i is defined as d_i=∑_(i=1)^n▒a_ij , and degree matrix is D=diag{d_1,d_2,⋯,d_n }. The Laplacian matrix of the graph G associated with adjacency matrix A is designed as L=(l_ij ), where l_ii=∑_(j=1,j≠i)^n▒a_ij and l_ij=-a_ij,i≠j,i,j=1,2,⋯,n, that is L=D-A.

2.入度矩阵

图 G 的入度矩阵 D 定义为: D = d i a g ( d 1 , d 2 , ⋯ , d n ) , D=diag(d_1,d_2,⋯,d_n ), D=diag(d1,d2,,dn)其中 d i = ∑ i = 1 n a i j d_i=\sum_{i=1}^n a_{ij} di=i=1naij

3.拉普拉斯矩阵

图 G 的Laplacian矩阵的定义为: L = ( l i j ) L=(l_{ij}) L=lij
其中 l i i = ∑ j = 1 , j ≠ i n a i j l_{ii}=∑_{j=1,j≠i}^n a_{ij} lii=j=1,j̸=inaij
l i j = − a i j , i ≠ j , i , j = 1 , 2 , ⋯ , n , l_{ij}=-a_{ij},i≠j,i,j=1,2,⋯,n, lij=aij,i̸=j,i,j=1,2,,n,
从Laplacian矩阵的定义中可以得出一个重要的性质: L ⋅ 1 = 0 L⋅1=0 L1=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值