首先检查电脑是否有合适的GPU,若有安装Cuda与CuDNN。不可以的直接下载安装torch。
电脑配置不是太差的,基本上用cuda10.2就行了
cuda下载链接
下载cuda,下载完成一步步安装即可,默认路径就好。
cuDNN下载链接
下载cuDNN ,下载完成解压压缩包,将其中的文件夹复制到cuda的安装目录下,默认C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
。
记得cuda和cuDNN的版本要对应。
下载部分有的人说很慢,我用的国际流量(懂得都懂)+IDM,很快。
两个都安装完之后将
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64
添加到系统环境变量的Path中。
打开Anaconda Prompt,输入输入 nvcc -V
, 出现以下信息说明cuda安装成功。
进入到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite
按住shift+右键,打开Powershell窗口,运行
我这边直接运行的时候出错,但是按照提示修改一下是可以的,当下面出现PASS表示安装成功。
下载pytorch安装文件,进行pytorch的安装
打开Anaconda,进入环境部分,点击左下角的create,名称输入pytorch(实际上可以自己定义,能记得是啥就行),python版本跟自己的对应。
下图可以看到我现在有两个环境,base和新建的pytorch。
打开Anaconda Prompt,输入conda env list
也可以看到同样的两个环境。
执行如下命令,激活这个环境。conda activate (之前自己定义的名字)
conda activate pytorch(可以是自己定义的任何名字)
可以看到已经进入到这个环境下面
进入到环境之后下载torch。由于pytorch的官网在国外,下载相关的环境包是比较慢的,所以给环境换源。在pytorch环境下依次执行如下的命名给环境换清华源。(此部分参考此博主的博文参考链接)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
注意以上四行代码都是在激活后的pytorch中进行。
https://pytorch.org/get-started/locally/
打开pytorch官网,选择相对应的部分,stable比较稳定,windows,conda(因为我们使用的是Anaconda),Python,之前下载的10.2的cuda
复制红框中的代码,后面的-c pytorch不要复制,在pytorch环境中粘贴
conda install pytorch torchvision torchaudio cudatoolkit=10.2
稍等片刻即安装完成。
在pytorch环境中输入import torch
或者import torchvision
没有报错,安装完成。
也可以输入红框中的代码,最后返回True也表示安装成功(此部分参考此博主的博文参考链接)。