现有网络模型的使用及修改

该代码示例导入了torch和torchvision库,创建了两个VGG16模型,一个预训练(在ImageNet上),另一个未预训练。预训练模型加载了在ImageNet数据集上的权重。然后,对预训练模型的分类层进行了调整,以适应CIFAR10数据集的10个类别。未预训练的模型手动修改了最后一层的线性层以匹配CIFAR10的输出类别。
摘要由CSDN通过智能技术生成

pretrained(bool):如果是True,说明这个模型在ImageNet数据集上已经训练好了。

progress(bool):如果为True,显示一个下载的进度条。

import torch
import torchvision
import torchvision.models as models
# train_data = torchvision.datasets.ImageNet("../data_image_net",split='train', download=True,transform=torchvision.transforms.ToTensor())
from torch import nn

vgg16_false = models.vgg16(pretrained=False) #参数是默认的参数,是初始化的
vgg16_true = models.vgg16(pretrained=True) # 要去下载在ImageNet中训练好的参数
print("ok")
print(vgg16_true)

train_data = torchvision.datasets.CIFAR10('../data',train=True,transform=torchvision.transforms.ToTensor(),download=True)
vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,10))
print(vgg16_true)
print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096,10)
print(vgg16_false)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值