day11 ● 20. 有效的括号● 1047. 删除字符串中的所有相邻重复项● 150. 逆波兰表达式求值

文章介绍了如何使用栈解决有效括号问题,包括左括号和右括号不匹配的三种情况,并提供了相应的代码实现。同时,文章还讲解了如何利用栈处理字符串中的重复项删除以及逆波兰表达式的求值问题,涉及到字符串操作和基本的算术运算。
摘要由CSDN通过智能技术生成

20. 有效的括号

介绍

思路

一共有三种情况:

栈模拟三种不匹配的情况:

第一种:左括号多了遍历字符串时,若遇到左括号,就将右括号入栈。若约到右括号,则将栈顶元素出栈。最后,若栈中留有元素,那么不匹配

第二种:右括号不匹配遍历字符串时,若遇到左括号,就将右括号入栈。若约到右括号,则将栈顶元素出栈,若不匹配,则结束遍历,不匹配。

第三种:右括号多了遍历字符串时,若遇到左括号,就将右括号入栈。若约到右括号,则将栈顶元素出栈,若字符串还没遍历结束,栈就为空了,那么也不匹配。

定义一个栈 stack<char/int> st;
剪支if(s.size%2!=0) return false
for(i=0;i<s.size();i++){
    if(s[i]=='(') st.push(')');
    else if(s[i]=='{') st.push('}')
    else if(s[i]=='[') st.push(']')
    //二三种情况
    else if(st.empty()||st.top()!=s[i]) return false
    else st.pop()
}
//遍历完字符串后,若栈中还有元素,说明左括号多了
return st.empty();

代码

class Solution {
public:
    bool isValid(string s) {
        if(s.size()%2!=0)   return false;
        stack<char> st;
        for(int i=0;i<s.size();i++){
            if(s[i]=='(') st.push(')');
            else if(s[i]=='{')   st.push('}');
            else if(s[i]=='[')   st.push(']');
            else if(st.empty()||st.top()!=s[i]) return false;
            else st.pop();
        }
        return st.empty();
    }
};

1047. 删除字符串中的所有相邻重复项

介绍

给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。

在 S 上反复执行重复项删除操作,直到无法继续删除。

在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。

思路

遍历字符串,开始栈里没有元素,则入栈,然后遍历下一个。下一个元素首先将于栈顶元素比较,若不相等,则入栈,继续往后遍历。遍历到的元素继续与栈顶元素比较,若相等,则满足消除条件,则将栈顶元素弹出,继续向下遍历比较,直到遍历结束,此时栈中的元素就是剩下的元素,出栈即可。

也可以用字符串来模拟这个栈,使用字符串模拟时,把尾部作为栈的出口,把头部作为栈的顶部。

定义一个字符串  string result
for(char s :S ){
    if(result==empty()||s!=result.back)//字符串使用尾部,模拟栈头
        result.push_back(s)
    else //相等的话,栈中的元素做一个弹出的操作
        result.pop_back();//字符串从尾部弹出
}
return result;//字符串从头显示

代码

class Solution {
public:
    string removeDuplicates(string s) {
        string result;
        for(char r:s){
            if(result.empty() || result.back()!=r){
                result.push_back(r);
            }else{
                result.pop_back();
            }
        }
        return result;
    }
};

150. 逆波兰表达式求值

介绍

思路

逆波兰表达式/后缀表达式

中置表达式:(1+2)x(3+4)

后缀表达式即为上述二叉树的后续遍历(左右中)12+34+x

如何使用栈来计算后缀表达式?

遇到数字就加入到栈中,遇到操作符就从栈中取出两个元素做计算,然后将其入栈。最后的结果就是栈中的最后一个元素。

stack<int> st;
for(i=0;i<s.size();i++){
    if(s[i]=='+'||=='-'||'/'||'x'){
        int nums1 = st.top();
        st.pop();
        int nums2 = st.top();
        st.pop();
        if(s[i]=='+') st.push(nums1+nums2);//记得转换成int
        if(s[i]=='-') st.push(nums1-nums2);
        if(s[i]=='x') st.push(nums1xnums2);
        if(s[i]=='/') st.push(nums1/nums2);
    }else{
        st.push(s[i])//记得转换成int
    }
}
int result = st.top();
st.pop()
return result;

代码

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<long long> st;
        for(int i=0;i<tokens.size();i++){
            if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/"){
                long long nums1 = st.top();
                st.pop();
                long long nums2 = st.top();
                st.pop();
                if (tokens[i] == "+") st.push(nums2+nums1);//记得转换成int
                if(tokens[i] == "-") st.push(nums2-nums1);
                if(tokens[i] == "*")  st.push(nums2*nums1);
                if (tokens[i] == "/")  st.push(nums2/nums1);
        }else{
            st.push(stoll(tokens[i]));//stoll将字符串转换为长整型
        }
    }
    int result = st.top();
    st.pop();
    return result;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值