把所有的村民排成一队,所有的父亲必须排在其子孙的前面,有人的父亲不在村子里,求排列的总数,
首先设一个虚拟节点0,表示所有父亲不在村子里的人虚拟父亲,这样所有的点就构成了一棵树,
假设以i为根的子树的排列数为f(i),其节点数为s(i),
考虑一棵以C为根的子树,cj为其孩子,首先每棵以孩子节点为根的子树的排列是相互独立的,满足乘法原理,所以在不考虑子树之间的排列时排列总数为∏f(cj),再考虑吧所有的子孙穿插起来(其中每棵子树子孙的相对位置不变)的排列数,这相当于有重复元素的全排列,所以f(C) = f(c1)*f(c2)...f(cj)*(s(C)-1)!/(s(c1)!s(c2)!...s(cj)!),通过递归式的求解可以化简成为f(root) = (s(root)-1)!/(s(1)s(2)...s(n))(训练指南上给出的式子有问题),此题要求答案对1000000007取模后的结果,把除法转化成乘以其逆元,所以预处理从1到40000阶乘和其在⊙m下的乘法逆元,m = 1000000007,按照给出的数据带入即可。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <queue>
#include <algorithm>
#include <vector>
#include <cstring>
#include <stack>
#include <cctype>
#include <utility>
#include <map>
#include <string>
#include <climits>
#include <set>
#include <string>
#include <sstream>
#include <utility>
#include <ctime>
using std::priority_queue;
using std::vector;
using std::swap;
using std::stack;
using std::sort;
using std::max;
using std::min;
using std::pair;
using std::map;
using std::string;
using std::cin;
using std::cout;
using std::set;
using std::queue;
using std::string;
using std::istringstream;
using std::make_pair;
using std::greater;
using std::endl;
typedef long long LL;
const int MAXN(40010);
const LL MOD(1000000007);
void egcd(LL a, LL b, LL &x, LL &y, LL &G)
{
if(!b)
{
G = a;
x = 1;
y = 0;
}
else
{
egcd(b, a%b, y, x, G);
y -= x*(a/b);
}
}
LL inverse(LL a, LL M)
{
LL x, y, G;
egcd(a, M, x, y, G);
return G == 1? (x+M)%M: -1LL;
}
LL fac[MAXN], inv[MAXN];
struct EDGE
{
int v;
EDGE *next;
};
EDGE *first[MAXN];
EDGE edge[MAXN];
EDGE *rear;
void init()
{
memset(first, 0, sizeof(first));
rear = edge;
}
void insert(int tu, int tv)
{
rear->v = tv;
rear->next = first[tu];
first[tu] = rear++;
}
bool is_root[MAXN];
LL ans;
int dfs(int cur)
{
int ts = 1;
for(EDGE *i = first[cur]; i; i = i->next)
ts += dfs(i->v);
if(cur != 0)
ans = ans*inv[ts]%MOD;
return ts;
}
int main()
{
fac[0] = 1LL;
for(int i = 1; i <= 40000; ++i)
{
fac[i] = fac[i-1]*i%MOD;
inv[i] = inverse(i, MOD);
}
int T;
scanf("%d", &T);
while(T--)
{
init();
int n, m;
scanf("%d%d", &n, &m);
int tu, tv;
memset(is_root, -1, sizeof(is_root));
for(int i = 0; i < m; ++i)
{
scanf("%d%d", &tv, &tu);
insert(tu, tv);
is_root[tv] = false;
}
for(int i = 1; i <= n; ++i)
if(is_root[i])
insert(0, i);
ans = fac[n];
dfs(0);
printf("%lld\n", ans);
}
return 0;
}