带标号的连通图计数

这篇博客探讨了如何计算带有标号的n个点之间的连通图种类。通过定义f(i)为连通图的种数,g(i)为不连通的图种数,h(i)为所有图的总数,给出了f(i)和g(i)之间的关系式f(i)+g(i) = h(i) = 2^(n*(n-1)/2)。进一步,利用组合数学,博主解析了不连通图g(i)的计数公式,并通过分类讨论标号为1的节点来推导连通图f(i)的数量。
摘要由CSDN通过智能技术生成

给n个带有标号的点,求其连通图的种数,设f(i)为答案,g(i)为不连通的图种数,h(i)表示图的总数

有f(i)+g(i) = h(i) = 2^(n*(n-1)/2)

考虑标号为1的节点所在的连通分量,则可以按照其所在连通分量的点的个数进行分类有

g(i) = Σ(C(i-1, k-1)*f(k)*h(i-k))( 1<=k < i)

f(i) = h(i)-g(i)

import java.math.BigInteger;
import java.util.Scanner;

public class Main {
	  static int MAXN = 50;
	  public static void main(String[] args){
		  	BigInteger f[] = new BigInteger [MAXN+10], 
		  			   h[] = new BigInteger [MAXN+10],
		  			   g[] = new BigInteger [MAXN+10],
		  			   C[][] = new BigInteger [MAXN+10][MAXN+10];
		    BigInteger two = new BigInteger("2");
		    C[0][0] = new
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值