【XSY1544】fixed 数学 强连通图计数

这篇博客探讨了在给定的n阶整数方阵中,如何计算存在不动点的非强连通图的数量。通过将方阵转换为图,并证明方阵有不动点当且仅当图不是强连通图,博主提供了计算方案,涉及到递推公式和图论概念。最终的时间复杂度为O(n^2)。
摘要由CSDN通过智能技术生成

题目描述

​  给你一个 n×n 的方阵 A 。定义方阵 A 的不动点 (i,j) 为: p,q0,(Ap)i,j=(Aq)i,j

​  求有多少个元素都在 [0,m) 之间的 n 阶整数方正存在不动点。

​  对 109+7 取模。

​   n3000,m109

题解

​  我们可以把方阵看成图 G ai,j 表示第 i 个点有多少条有向边连到第 j 个点。 api,j 表示有多少条从 i 出发经过 p 条边到达 j 的路径。

​  考虑 a0 ,即单位矩阵。所以若不动点 (i,j) 在主对角线上则 ai,j=1 ,否则 ai,j=0

​  有一个结论:这个方阵有不动点当且仅当这个图不是强连通图。

​  证明:

​    1.如果

在Android Studio中绘制心电图需要使用自定义View,可以通过继承View或SurfaceView来实现。一般来说,绘制心电图需要以下步骤: 1.获取心电图数据,可以从传感器或文件中读取。 2.将数据转换为坐标点,根据心电图的横纵坐标比例和偏移量计算出每个点的坐标。 3.在自定义View的onDraw()方法中使用Canvas绘制坐标点,可以使用Path或Line等绘制方法。 4.根据需要添加背景、网格线、标尺等辅助元素。 下面是一个简单的示例代码,用于在Android Studio中绘制心电图: ```java public class EcgView extends View { private Paint mPaint; private Path mPath; private float[] mData; // 心电图数据 public EcgView(Context context) { super(context); init(); } public EcgView(Context context, AttributeSet attrs) { super(context, attrs); init(); } private void init() { mPaint = new Paint(); mPaint.setColor(Color.RED); mPaint.setStrokeWidth(2); mPath = new Path(); } public void setData(float[] data) { mData = data; invalidate(); } @Override protected void onDraw(Canvas canvas) { super.onDraw(canvas); if (mData == null || mData.length == 0) { return; } int width = getWidth(); int height = getHeight(); float xStep = width * 1.0f / mData.length; float yStep = height * 1.0f / 4096; // 假设心电图数据范围为0-4096 mPath.reset(); mPath.moveTo(0, height / 2); for (int i = 0; i < mData.length; i++) { float x = i * xStep; float y = height / 2 - mData[i] * yStep; mPath.lineTo(x, y); } canvas.drawPath(mPath, mPaint); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值