不管是list类型的数据还是dict类型的数据,输入给dataloader都会把我的数据shape给转置了。
比如我的数据应该是[batch_size, seq_len]尺寸的,dataloader吐出来的却是[seq_len, batch_size]。如果还是tensor类型还行,但是它会变成List[Tensor]类型。如果只是两维也还行,但是如果是[batch_size, seq_len, nvars]呢,很难把shape变回来。
之前其实没有遇到过这个问题。通过查看源码,加上和之前的代码对比,终于找到了原因:
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = list(zip(*batch)) # It may be accessed twice, so we use a list.
dataloader默认的collate_fn是这样处理的。也就是说只要是collections.abs.Sequence类型的,都会被转置。
那么解决办法就明显了,只要数据不是这个类型的就行。
所以在准备dataset的时候要把数据转成numpy或者tensor格式,这样就不会走转置这个路径了。
如果用的是huggingface的datasets,可以用dataset.set_format(type='numpy')来设置数据格式,且它只对数字类型的起作用,不会影响文本类型,可以放心使用。
实在搞不懂collate默认转置的意义是什么。开发者的解释在这里default_collate: if elem in batch is list, the whole batch would be transpose? · Issue #50272 · pytorch/pytorch (github.com)
感兴趣的可以看下。