poj 2186 Popular Cows(Tarjan,强连通分量缩点)

本文介绍了一个基于Tarjan算法解决的问题实例:如何通过构建有向图并利用Tarjan算法找到强连通分量来确定哪些元素被全体其他元素所指向。文章详细解释了Tarjan算法的应用过程,包括初始化图结构、添加边、执行Tarjan算法进行强连通分量的查找以及最终统计出度为0的分量数量。
摘要由CSDN通过智能技术生成

参考:http://blog.csdn.net/u010885899/article/details/47254707
http://blog.csdn.net/lyy289065406/article/details/6764104
题意是给你几头牛,然后给你一个A牛喜欢B牛 这类的关系,这种喜欢的关系还可以传递,比如A喜欢B,B喜欢C,那就A也喜欢C了。问有多少头牛被所有牛喜欢。
模板题,Tarjan求出强连通分量,然后缩点,缩点后如果只有一个出度为0的点,则这个强连通分量里的点数就是答案,如果出度为0的点大于一个,结果为0,因为把图中的所有极大强连通分量求出后,对每个极大强连通分量缩点,就可以把图收缩成一棵有向无环树DAG,所以叶子节点大于一个的话,从一个叶子节点是无法到大另一个叶子节点的。

#include <stdio.h>
#include <string.h>

const int MAXN = 10010;
const int MAXM = 50010;
struct Edge
{
    int to,next;
}edge[MAXM];
int head[MAXN],tot;
//Belong[i]表示点i属于第Belong[i]个强连通分量
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
int degree[MAXN];
int Index,top;
int scc;
bool Instack[MAXN];
//num统计每个强连通分量有几个节点
int num[MAXN];

void init()
{
    tot = 0;
    memset(head,-1,sizeof(head));
    memset(degree,0,sizeof(degree));
}

void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}

void Tarjan(int u)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if(!DFN[v])
        {
            Tarjan(v);
            if(Low[u] > Low[v])
                Low[u] = Low[v];
        }
        else if(Instack[v] && Low[u] > DFN[v])
            Low[u] = DFN[v];
    }
    if(Low[u] == DFN[u])
    {
        scc++;
        do
        {
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
        }while(v != u);
    }
}

void solve(int N)
{
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));
    memset(num,0,sizeof(num));
    Index = scc = top = 0;
    for(int i = 1; i <= N; ++i)
        if(!DFN[i])
            Tarjan(i);
}


int main()
{
    init();
    int n,m,a,b;
    scanf("%d %d",&n,&m);
    for(int i = 0; i < m; ++i)
    {
        scanf("%d %d",&a,&b);
        addedge(a,b);
    }
    solve(n);
    for(int i = 1; i <= n; ++i)
    {
        for(int j = head[i]; j != -1; j = edge[j].next)
        {
            if(Belong[i] != Belong[edge[j].to])
                degree[Belong[i]]++;//计算缩点后每个点的出度
        }
    }
    int outNum = 0,import;
    for(int i = 1; i <= scc; ++i)
    {
        if(degree[i] == 0)
        {
            ++outNum;
            import = i;
        }
    }
    if(outNum == 1)
        printf("%d\n",num[import]);
    else
        printf("0\n");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值