参考:http://blog.csdn.net/u010885899/article/details/47254707
http://blog.csdn.net/lyy289065406/article/details/6764104
题意是给你几头牛,然后给你一个A牛喜欢B牛 这类的关系,这种喜欢的关系还可以传递,比如A喜欢B,B喜欢C,那就A也喜欢C了。问有多少头牛被所有牛喜欢。
模板题,Tarjan求出强连通分量,然后缩点,缩点后如果只有一个出度为0的点,则这个强连通分量里的点数就是答案,如果出度为0的点大于一个,结果为0,因为把图中的所有极大强连通分量求出后,对每个极大强连通分量缩点,就可以把图收缩成一棵有向无环树DAG,所以叶子节点大于一个的话,从一个叶子节点是无法到大另一个叶子节点的。
#include <stdio.h>
#include <string.h>
const int MAXN = 10010;
const int MAXM = 50010;
struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
//Belong[i]表示点i属于第Belong[i]个强连通分量
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
int degree[MAXN];
int Index,top;
int scc;
bool Instack[MAXN];
//num统计每个强连通分量有几个节点
int num[MAXN];
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
memset(degree,0,sizeof(degree));
}
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void Tarjan(int u)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!DFN[v])
{
Tarjan(v);
if(Low[u] > Low[v])
Low[u] = Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
scc++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
}while(v != u);
}
}
void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index = scc = top = 0;
for(int i = 1; i <= N; ++i)
if(!DFN[i])
Tarjan(i);
}
int main()
{
init();
int n,m,a,b;
scanf("%d %d",&n,&m);
for(int i = 0; i < m; ++i)
{
scanf("%d %d",&a,&b);
addedge(a,b);
}
solve(n);
for(int i = 1; i <= n; ++i)
{
for(int j = head[i]; j != -1; j = edge[j].next)
{
if(Belong[i] != Belong[edge[j].to])
degree[Belong[i]]++;//计算缩点后每个点的出度
}
}
int outNum = 0,import;
for(int i = 1; i <= scc; ++i)
{
if(degree[i] == 0)
{
++outNum;
import = i;
}
}
if(outNum == 1)
printf("%d\n",num[import]);
else
printf("0\n");
return 0;
}