给你一个有 n
个节点的 有向无环图(DAG),请你找出所有从节点 0
到节点 n-1
的路径并输出(不要求按特定顺序)
graph[i]
是一个从节点 i
可以访问的所有节点的列表(即从节点 i
到节点 graph[i][j]
存在一条有向边)。
示例 1:
输入:graph = [[1,2],[3],[3],[]] 输出:[[0,1,3],[0,2,3]] 解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3
示例 2:
输入:graph = [[4,3,1],[3,2,4],[3],[4],[]] 输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
提示:
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i
(即不存在自环)graph[i]
中的所有元素 互不相同- 保证输入为 有向无环图(DAG)
思路
这道题目是深度优先搜索,比较好的入门题。
1. 确认递归函数,参数
首先我们dfs函数一定要存一个图,用来遍历的,还要存一个目前我们遍历的节点,定义为x
至于 单一路径,和路径集合可以放在全局变量,那么代码是这样的:
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 0节点到终点的路径
// x:目前遍历的节点
// graph:存当前的图
void dfs (vector<vector<int>>& graph, int x)
2. 确认终止条件
什么时候我们就找到一条路径了?
当目前遍历的节点 为 最后一个节点的时候,就找到了一条,从 出发点到终止点的路径。
当前遍历的节点,我们定义为x,最后一点节点,就是 graph.size() - 1(因为题目描述是找出所有从节点 0 到节点 n-1 的路径并输出)。
所以 但 x 等于 graph.size() - 1 的时候就找到一条有效路径。 代码如下:
// 要求从节点 0 到节点 n-1 的路径并输出,所以是 graph.size() - 1
if (x == graph.size() - 1) { // 找到符合条件的一条路径
result.push_back(path); // 收集有效路径
return;
}
3. 处理目前搜索节点出发的路径
接下来是走 当前遍历节点x的下一个节点。
首先是要找到 x节点链接了哪些节点呢? 遍历方式是这样的:
for (int i = 0; i < graph[x].size(); i++) { // 遍历节点n链接的所有节点
接下来就是将 选中的x所连接的节点,加入到 单一路径来。
path.push_back(graph[x][i]); // 遍历到的节点加入到路径中来
例如如果x目前是节点0,那么目前的过程就是这样的:
二维数组中,graph[x][i] 都是x链接的节点,当前遍历的节点就是 graph[x][i]
。
进入下一层递归
dfs(graph, graph[x][i]); // 进入下一层递归
最后就是回溯的过程,撤销本次添加节点的操作。 该过程整体代码:
for (int i = 0; i < graph[x].size(); i++) { // 遍历节点n链接的所有节点
path.push_back(graph[x][i]); // 遍历到的节点加入到路径中来
dfs(graph, graph[x][i]); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
本题整体代码如下:
class Solution {
private:
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 0节点到终点的路径
// x:目前遍历的节点
// graph:存当前的图
void dfs (vector<vector<int>>& graph, int x) {
// 要求从节点 0 到节点 n-1 的路径并输出,所以是 graph.size() - 1
if (x == graph.size() - 1) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
for (int i = 0; i < graph[x].size(); i++) { // 遍历节点n链接的所有节点
path.push_back(graph[x][i]); // 遍历到的节点加入到路径中来
dfs(graph, graph[x][i]); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
path.push_back(0); // 无论什么路径已经是从0节点出发
dfs(graph, 0); // 开始遍历
return result;
}
};