利用向量叉乘计算点到直线距离

主要利用到向量叉乘的意义

如果说一条线段的两个端点坐标分别是A,B点,线段外一点为P,那么向量AB与向量AP的叉乘的模就是以ABP三点形成的平行四边形面积,这样求P到AB距离,就可以用向量叉乘模长除以底边AB长度即可。

在三维空间解析几何中,计算一个点到一条直线的距离是一个常见的问题。这个距离是指从给定点垂直投影至直线上最短路径的长度。 假设有一条由两个不同点A($x_1$, $y_1$, $z_1$) 和B($x_2$, $y_2$, $z_2$)确定的空间直线L以及另一个不在直线上的点P($x_p$, $y_p$, $z_p$),那么可以利用向量的方法出点P到直线L的距离d。 设$\vec{AB}$是从点A指向点B的方向向量,则有: $$\vec{AB} = (x_2-x_1, y_2-y_1, z_2-z_1)$$ 再设定$\vec{AP}$是从点A指向点P的位置向量,则有: $$\vec{AP} = (x_p-x_1, y_p-y_1, z_p-z_1)$$ 点P到直线L的距离可以通过下面的公式得到: $$ d = \frac{\|\vec{AP}\times\vec{AB}\|}{\|\vec{AB}\|} $$ 这里 $\vec{AP}\times\vec{AB}$ 是两向量结果,它给出的是一个新的向量,其大小等于以这两个向量为邻边形成的平行四边形面积;而分子中的范数(即绝对值符号内的表达式)代表了该新向量的模长。分母则是方向向量$\vec{AB}$的模长。 如果直线是由参数方程或者一般形式的方程给出的话,也可以直接应用相应的公式来找到距离。例如对于标准型直线方程$(x-x_0)/a=(y-y_0)/b=(z-z_0)/c$和一点$M(x_m,y_m,z_m)$,则可以用以下公式: $$ d=\sqrt{(by_{m}-bz_{0}-cy_{0}+cz_{m})^2+(az_{0}-ax_{m}+cx_{m}-cz_{0})^2+(ay_{0}-bx_{0}+bx_{m}-ay_{m})^2}/\sqrt{a^{2}+b^{2}+c^{2}} $$ 其中$a,b,c$是直线的方向比例系数,$(x_0,y_0,z_0)$是直线上任意已知的一个点坐标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值