【算法】费马小定理

定义

有一质数 p p p,若任意一正整数 a a a p p p 互质,则有

a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1 \pmod p ap11(modp)

证明

我们构造出一个集合 A = { 1 , 2 , 3 , … , p − 1 } A=\left \{ 1,2,3,…,p-1 \right \} A={1,2,3,,p1},表示 p p p 的完全剩余系(被 p p p 取模后的答案且不包含 0 0 0)。

因为集合 A A A 中的任意一元素都要与 p p p 互质,且 a a a 同样也与 p p p 互质,所以集合内任意元素乘 a a a 同样也都与 p p p 互质,模 p p p 后不可能等于 0 0 0

又因为对于每一个 a A i ( m o d p ) aA_{i}\pmod p aAi(modp) 都一定小于 p p p,且 a A i ( m o d p ) aA_{i}\pmod p aAi(modp) 都一定互不相等(考虑反证,若有 a A i ≡ a A j ( m o d p ) aA_{i}\equiv aA_{j}\pmod p aAiaAj(modp),则 A i ≡ A j ( m o d p ) A_{i}\equiv A_{j}\pmod p AiAj(modp),显然不成立,所以 a A i ( m o d p ) aA_{i}\pmod p aAi(modp) 都一定互不相等)。

那么所有 A i A_{i} Ai 都一定会对应一个 a A i ( m o d p ) aA_{i}\pmod p aAi(modp),即:

∏ i = 1 p − 1 A i ≡ ∏ i = 1 p − 1 ( a A i ) ( m o d p ) \prod_{i=1}^{p-1} A_{i}\equiv \prod_{i=1}^{p-1}(aA_{i})\pmod p i=1p1Aii=1p1(aAi)(modp)

A 1 × A 2 × … A p − 1 ≡ a × A 1 × a × A 2 × … a × A p − 1 ( m o d p ) A_{1}\times A_{2}\times… A_{p-1}\equiv a\times A_{1}\times a\times A_{2}\times…a\times A_{p-1}\pmod p A1×A2×Ap1a×A1×a×A2×a×Ap1(modp)

因为每个 A i A_{i} Ai 都等于 i i i 0 0 0 除外),所以

( p − 1 ) ! ≡ a p − 1 × ( p − 1 ) ! ( m o d p ) (p-1)!\equiv a^{p-1}\times (p-1)!\pmod p (p1)!ap1×(p1)!(modp)

a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1 \pmod p ap11(modp)

证毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值