【算法】乘法逆元

定义

逆元是广义化的倒数,在除法运算当中,我们经常会遇到 ÷ a ÷a ÷a,那么 1 a \frac{1}{a} a1 a − 1 a^{-1} a1 就是它的逆元,通常用 i n v ( a ) inv(a) inv(a) 来表达。

换句话说,在同余意义下,除以一个数等于乘上一个数的逆元。

若某一实数 x x x 满足

a x ≡ 1 ( m o d p ) ax\equiv 1\pmod p ax1(modp)

我们就称 x x x a a a 在模 p p p 意义下的逆元。

任何整数 a   m o d   p a\bmod p amodp 都有逆元 a − 1   m o d   p a^{-1}\bmod p a1modp

同时,逆元还有一些性质

  • 对于一个数在模 p p p 意义下的逆元,必定唯一

  • i n v ( a ) × i n v ( b ) = i n v ( a × b ) inv(a)\times inv(b)=inv(a\times b) inv(a)×inv(b)=inv(a×b)

扩展欧几里得求逆元

我们将此同余方程化简一下

a x − p y = 1 ax-py=1 axpy=1

我们发现,当前不定方程与扩欧十分相像,如果令 a = a a=a a=a b = p b=p b=p 似乎可以直接求出 x x x 即逆元,可是等号右边却不同。

根据扩欧的性质可以得出(不知道的去看博客),若 gcd ⁡ ( a , b ) ∣ c \gcd(a,b)\mid c gcd(a,b)c,则方程一定有解。那么这时,如果 a a a p p p 不互质,也就没有逆元了,所以 a a a p p p 一定互质。

随后就可以正常的求扩欧了,得出 x x x 直接输出即可。

代码

#include<bits/stdc++.h>
using namespace std;
int a,p,x,y;
int exgcd(int a,int b,int &x,int &y)
{
	if(!b)
	{
		x=1;y=0;
		return a;
	}
	int gcd=exgcd(b,a%b,x,y);
	int t=x;
	x=y;
	y=t-(a/b)*y;
	return gcd;
}
int main()
{
	scanf("%d %d",&a,&p);
	int gcd=exgcd(a,p,x,y);
	if(gcd!=1)	
		puts("impossible");
	else printf("%d",(x%p+p)%p);
	return 0;
}

快速幂求逆元

我们知道,费马小定理所证明的式子为

a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod p ap11(modp)

(不会的看博客

我们可以将它化简一下,即:

a p − 2 × a ≡ 1 ( m o d p ) a^{p-2}\times a\equiv 1\pmod p ap2×a1(modp)

显然,此时 a p − 2 a^{p-2} ap2 a a a 在模 p p p 意义下的逆元。

代码

#include<bits/stdc++.h>
using namespace std;
int a,p;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int Pow(int n,int k)
{
	int res=1;
	while(k)
	{
		if(k&1)
			(res*=n)%=p;
		(n*=n)%=p;
		k>>=1;
	}
	return (res%p+p)%p;
}
int main()
{
	scanf("%d %d",&a,&p);
	int g=gcd(a,p);
	if(g!=1)	
		puts("impossible");
	else printf("%d",Pow(a,p-2));
	return 0;
}

递推求逆元

我们设模数 p = k × i + r p=k\times i+ r p=k×i+r,其中 i i i 为除数, k k k p ÷ i p÷i p÷i 的商, r r r 为余数。再将其乘上 i i i r r r 的逆元,即:

k × r − 1 + i − 1 ≡ 0 ( m o d p ) k\times r^{-1}+i^{-1}\equiv 0\pmod p k×r1+i10(modp)

i − 1 ≡ − k × r − 1 ( m o d p ) i^{-1}\equiv -k\times r^{-1}\pmod p i1k×r1(modp)

再将其替换成我们已知的变量

i − 1 ≡ − ⌊ p i ⌋ × ( p   m o d   i ) − 1 ( m o d p ) i^{-1}\equiv - \left \lfloor \frac{p}{i} \right \rfloor \times(p\bmod i)^{-1}\pmod p i1ip×(pmodi)1(modp)

我们即可从小到大枚举 i i i,递推求出逆元。

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,p;
int inv[13000001];
signed main()
{
	scanf("%lld %lld",&n,&p);
	inv[1]=1;
	puts("1");
	for(int i=2;i<=n;i++)
	{
	    inv[i]=((((-p/i))*inv[p%i])%p+p)%p;
	    printf("%lld\n",inv[i]);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值