概述:
SQL:结构化查询语言
Spark SQL是用于结构化数据处理的Spark模块(批/流处理),根据应用中数据类型和转换处理进行自动程序优化。
Datasets and DataFrames
Spark SQL中的两个非常重要的操作对象。
Dataset
数据集对象,代表是一个分布式数据集合,类似于功能增强RDD(强大函数和执行优化),Dataset可以通过JVM对象和函数转换操作获得,支持Java和Scala两种语言,目前不支持Python语言。
DataFrame
数据帧对象,对象是一个特殊的Dataset[Row],等价于关系型数据库中的表的概念。
可以从多种来源构造DataFrame。(结构化数据文件,HIbe中的表,外部数据库或现有RDD)
总结:
增强版本的RDD–> Dataset
DataFrame -> 特殊的Dataset
需要用到的依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.4</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.4.4</version>
</dependency>
开发应用
SQL语句实现(常用)
object SparkSQLExample {
def main(args: Array[String]): Unit = {
//1.创建Spark sql 应用环境对象Spark Session
val spark = SparkSession.builder().appName("quick example").master("local[*]").getOrCreate()
//2.构建数据源对象 Dataset 和DataFrame
//RDD --> Dataset
//导入外部的隐式转换
import spark.implicits._
val dataset = spark.sparkContext.makeRDD(List((1, "zs", "男"), (2, "ls", "女"), (3, "ww", "男"))).toDS()
//3.数据处理
//统计男性和女性的人数
//SQL:select sex,count(id) from t_user group by sex
//给数据集对象创建视图名(表名)
dataset.createTempView("t_user")
spark
.sql("select _3 as sex,count(_1) as num from t_user group by _3") //自动翻译成Spark应用
.show() //展示表中内容
//4.释放资源
spark.stop()
}
}
方法实现
object SparkSQLExample02 {
def main(args: Array[String]): Unit = {
//创建Spark SQL应用运行环境对象Spark Session
val spark = SparkSession.builder().appName("spark example").master("local[*]").getOrCreate()
//构建数据源对象 Dataset 和DataFrame
//RDD --> Dataset
//导入外部的隐式转换
import spark.implicits._
val dataFrame = spark.sparkContext.makeRDD(List((1,"zs","男"), (2, "ls", "女"), (3, "ww", "男"))).toDF
//数据处理
//统计男性和女性用户的人数
dateFrame
//分组方法
.groupByKey(row => row.getString(2))
.count() //男 2 女 1
.show()
//释放资源
spark.stop()
}
}
Dataset和DataFrame创建
非常相似,可以通过RDD隐式转换创建,转换函数等
RDD转换创建
Dataset
//导入外部隐式转换
import spark.implicits._
//通过元祖
val dataset = spark.sparkContext.makeRDD(List((1, "zs", "男"), (2, "ls", "女"), (3, "ww", "男"))).toDS
//通过样例类
val rdd = spark.sparkContext.makeRDD(List(Student(1, "zs", true), Student(2, "ls", false)))
val dataset =rdd.toDS
//外部数据源 : json
val dataFrame = spark.read.json("D:\workspace\hadoop\Spark-review\src\main\resources")
//resources目录下已有json文件
import spark.implicits._
//df转换为ds
val dataset = dataFrame.as[User]
dataset.show()
DataFrame
import spark.implicits._
val dataFrame = spark.sparkCOntext.makeRDD(List((1, "zs", "男"), (2, "ls", "女"), (3, "ww", "男"))).toDF()
//通过样例类
val rdd =spark.sparkContext.makeRDD(List((1, "zs", true), Student(2, "ls", false)))
//外部数据源 json
val dataFrame = spark.read.json("D:\workspace\hadoop\Spark-review\src\main\resources")
dataFrame.show()
//DataFrame <==> RDD[Row] +Schema
val rdd =spark.sparkContext.textFile("")
val rowsRDD = rdd
.map(line = >{
val arr = line.split(" ")
Row(arr(0).toInt,arr(1),arr(2).toInt,arr(3).toBoolean)
})
import spark.implicits._
//结构表约束(结构)对象
val schema = new StuctType()
.add("id",IntegerType)
.add("username",StringType)
.add("age",IntegerType)
.add("sex",BooleanType)
val dataFrame =spark.createDataFrame(rowsRDD,schema)