【论文阅读】A RR interval based automated apnea detection approach using residual network

论文阅读:A RR interval based automated apnea detection approach using residual network
在这里插入图片描述

一、摘要

提出了一种基于RR间隔(ECG信号的R峰之间的间隔)的残差网络来检测呼吸暂停的方法。在我们的模型中,我们应用残差网络来表示RR间隔携带的信息。此外,我们提出了一种新颖的观点,称为动态自回归表示,以提供通过卷积层表示RR间隔的解释。使用Physionet上公开可用的数据集,针对每段呼吸暂停检测测试了该方法。30夜录音用于训练,5用于测试。我们获得了94.4%的准确度,93.0%的灵敏度和94.9%的特异性的良好结果。该结果优于其他基于RR间隔的流行方法。在实验中使用ECG衍生的呼吸信号(EDR)时,该模型也显示出良好的适应性。在实验中评估并比较了其广泛性。将该模型与使用原始ECG信号进行呼吸暂停检测的深层神经网络进行了比较,并使用更少的输入样本获得了更好的结果。

二、数据

在我们的工作中,CinC Challenge 2000的数据库(也称为ECG-呼吸暂停数据库)是从Physionet [23]获取的进行培训和评估。该数据集中有70条记录,仅使用了35条带有注释的记录。在标记的数据集中,包括30位男性和5位女性,年龄从27岁到63岁。患者的平均年龄为46岁,患者的BMI为28±6.5。每位患者的ECG信号记录长度为430至578分钟,其中总呼吸暂停时间为303±20分钟。ECG信号的采样率为100 Hz。所有35个记录都以分钟为单位进行标记,以区分呼吸暂停分钟和非呼吸暂停分钟。每分钟的分钟都由专家检查和标记。总分钟数为16,988。呼吸暂停类别包括6496分钟,非呼吸暂停类别包括10492分钟。

三、方法

RR间隔的特征是两次连续两个心跳R峰之间的时间间隔(见图2))。具有各种计算方法的EDR信号可能会增加特征量和计算复杂度。为了减少测量误差和异位搏动的影响,我们选择正常搏动之间的RR间隔(NN间隔)作为神经网络的输入。与RR间隔类似,NN间隔也描述了两个R峰之间的时间间隔,但是检测和分类算法只会选择两个正常心跳之间的间隔[24],[53]。如果RR间隔的值超出系列平均值的20%,则将其视为异常值并消除。预处理后,将保留16,843分钟的NN间隔。然后,在过滤后以2 Hz的频率对NN间隔序列进行重新采样。为了减少残留的脉冲噪声和过渡段的影响,将连续3分钟的NN间隔作为一个大段加入,该段被标记为第三分钟的标记。

我们以两种方式构建具有卷积层的神经网络(见图3)。第一种是使用具有最长卷积核(NN间隔长度L)表示时间序列,并采用浅层全连接神经网络进行分类。这些构成了广泛的卷积神经网络(广泛的CNN)。在第二种方式中,卷积核比输入时间序列短,特征图的输出也是序列。因此,该序列可以由下一个卷积层动态表示。随着卷积层的深入,动态自回归表示由深层卷积神经网络(深CNN)实现。随着网络的深入,可以在网络中组装其他常见类型的层(例如,合并层,批处理规范化层)。这些层中的大多数仍然可以解释。它们的意义将在下一部分中进行解释。进行了宽CNN和深CNN的比较实验(如图6所示)),结果如表1所示。最后,由于其高性能,我们选择深度CNN来实现动态自回归表示。

在这里插入图片描述
为了评估残差网络的性能,我们建立了2个网络:残差网络和基本的CNN。据我们所知,没有其他神经网络使用RR输入进行呼吸暂停检测,因此我们建立了一个最佳的CNN作为基线。残差网络在31个残差块中具有33个卷积层以及1个密集层(请参见图6(b)和表2,并在图4中查看更多详细信息)。基本的CNN具有7个卷积层和2个密集层。基本CNN的架构如图6(a)所示,其参数如表2所示。。这两个网络都有两个部分:进行动态自回归表示的表示部分和检测呼吸暂停的分类部分。表示部分包括第一密集层之前的所有层,其余层组成分类部分。表示部分由四层组成:卷积层,池化层,退出层和批处理归一化层。这些层的工作方式如下:
在这里插入图片描述

四、结果

了评估我们方法的稳健性,进行了10倍交叉验证(稳健性评估最常用的分区)。数据集随机分为10个分区。依次将这些分区用作测试集,并且每次都在其余9个分区中训练模型。基本CNN和残差网络的10倍交叉验证结果如图8所示。在此图中,绘制了结果的中位数,第25个百分位数和第75个百分位数以及离群值。基本CNN的准确度为90.1±1.74%(平均值±标准偏差),而灵敏度为83.7±5.62%,特异性为94.1±2.29%。与基本的CNN相比,残差网络可实现稳定的更高性能,准确度为94.3±0.51%,灵敏度为92.3±0.73%,特异性为95.5±0.48%。
在这里插入图片描述
在睡眠呼吸暂停中,心脏和肺活动都受到影响[15],[47]。在这一部分中,我们通过使用ECG派生呼吸(EDR)信号评估了建议的残留网络的性能。此外,我们将模型的性能与不同长度的EDR信号和NN信号作为评估其性能的输入进行了比较。对每个输入长度进行10倍交叉验证(请参见图10中的更多详细信息)。
在这里插入图片描述
所提出的模型在NN间隔和EDR信号下均取得了良好且稳定的性能。与使用EDR信号作为输入的网络相比,使用NN间隔的网络以较低的标准偏差达到了更高的准确性,灵敏度和特异性水平。但是,随着输入长度的增加,它们之间的差异变得越来越小。使用EDR信号的良好性能证明了该模型的有效性。拟议的网络通过在NN间隔和EDR信号上均实现了良好的性能,表现出强大的适应性。这是因为该神经网络可以使用不同的训练数据来更新其参数。适应性是神经网络的一大优势。我们将使用NN间隔的模型的更好性能归功于数据的整洁度。而且,两个结果之间的差异不断减小,显示了神经网络的另一项优势:数据更多,性能更好。在神经网络中,随着输入数据长度的增加,不断增长的信息可以弥补使用EDR信号的不足。

五、讨论

这可能是因为深度残差网络从RR间隔中学到的知识不同于人工特征。与使用ECG的神经网络相比,使用同一数据集中的低采样率数据,它的性能也更好,更稳定。我们将这个好结果归功于残留网络中的快捷连接。第三,该模型在使用EDR信号时表现出较强的适应性。在实验中,该模型与EDR信号配合使用,可以很好地处理由数据训练的灵活参数。

我们的工作有几个局限性。首先,主题和RR间隔段的数量不足以进行深度学习。当数据集较小时,不可避免地会受到深度学习的过度拟合问题的影响。我们期待在更大的数据集中开发和测试该模型。其次,在我们的工作中,将三分钟的移动窗口用于输入数据。一分钟的片段在大多数传统研究中都是经过改编的,而超过一分钟的移动窗口仅由几部作品改编[34],[68]。我们使用移动窗口来克服过渡时期的影响,并通过实验证明其效果。在进一步的工作中,可以通过更大的数据集和更精确的识别模型来减轻这种影响。第三,该模型不适用于从未遇到过的受试者,而具有人工特征的高级模型在相同情况下的性能较差[67]。在以后的工作中,仍然需要提高广泛性。最后,本研究中使用的所有数据均来自单个医疗中心。但是,来自多个医疗中心的数据更可靠,并且在其上测试的模型更加健壮。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值