论文阅读:Single Channel ECG for Obstructive Sleep Apnea Severity Detection Using a Deep Learning Approach
一、摘要
专注于正常受试者(AHI <; 5)和严重OSA患者(AHI> 30)之间的分类。将具有呼吸暂停或呼吸不足事件的15秒原始ECG记录与一系列一维卷积神经网络(1-D CNN)用于自动特征提取,将深循环神经网络与长短期记忆(LSTM)结合用于时间信息提取和全连接神经网络(DNN),用于从大量特征中进行特征编码,直到接近两类为止。我们提出的方法的主要优点包括更轻松的数据获取,即时OSA严重性检测以及有效的特征提取,而无需专业知识。为了评估我们提出的方法,将545例受试者(其中364例正常,181例严重OSA患者)从MrOS睡眠研究(访问1)数据库中获取,并通过k倍交叉验证技术进行了研究。准确度为79。OSA严重程度分类的敏感性,特异性和F评分达到45%。这明显高于具有RR间隔和ECG派生呼吸(EDR)信号特征提取的SVM分类器的结果。有希望的结果表明,该方法为从单通道心电图检测OSA严重性提供了良好的开端,可从家庭和家庭中的可穿戴设备获得这些信息。
二、数据集
本研究中使用的数据集来自MrOS睡眠研究(访问1)数据库[7],[4],[19],[2]。在基线检查中,在6个临床中心记录了2911名65岁以上的人的数据。他们提供原始多导睡眠监测(PSG)数据作为欧洲数据格式(EDF)文件,以及从Compumedics Profusion导出的每个参与者的注释XML文件。该数据集中的ECG信号是通过0.15 Hz的高通滤波器从Ag / AgCl贴片传感器以512 Hz的采样率获取的。每个注释文件包括每个EDF文件的呼吸暂停或呼吸不足发生的开始时间和持续时间的标记。我们使用数据集中提供的AHI变量来标记每条记录的OSA严重程度,该变量是每小时每小时发生4%的去饱和的所有去饱和和呼吸不足的呼吸暂停次数[5]。为了检测严重的OSA患者,以便如第二节所述,我们可以预防心源性猝死,因此,我们使用了AHI值在2到5之间的正常患者的ECG记录,以及AHI值大于2的非常严重的OSA患者的记录。 35.最后,对545名受试者进行了预处理,其中包括364名正常受试者和181名严重OSA受试者:
滤波ECG:为了减少ECG记录中的噪声[3],原始ECG信号通过60 Hz的陷波滤波器滤波,然后使用截止频率分别为5和35 Hz的带通二阶Butterworth滤波器滤波。
提取呼吸暂停或呼吸不足事件:从开始时间到开始时间(根据其注释文件添加持续时间),将每个受试者的心电图提取为呼吸暂停或呼吸不足事件的样本。我们仅使用了持续28至32秒的事件。然后,我们选择了30秒,并使用z-score函数对其进行了归一化。最后,我们仅选择要使用的前15秒。
随机选择的样本:完成所有数据预处理程序后,共有8604例呼吸暂停或呼吸不足事件样本,其中3270例来自正常受试者,5334例来自严重OSA患者。我们最终从每个组中随机选择了1000个样本用于创建分类器。
三、方法
从15秒的ECG样本中检测了RR间隔和ECG派生呼吸(EDR)信号,并从中提取了特征
采用深度学习模型进行分类
四、结果
与其他先前的研究相比,该提议的分类方法实现了新的贡献水平。首先,它更方便,因为我们仅使用单个ECG通道对OSA严重性进行分类,并且此类设备通常可穿戴设备中找到。其次,我们仅使用了15秒的ECG信号,因此几乎是瞬时的。从这一优点出发,它不仅解决了浪费时间的问题,而且还可以适应警报系统的需要,以防止心源性猝死。最后,深度学习方法可帮助我们进行特征提取,并提供令人鼓舞的结果。但是,我们需要改进分类器,使其与所有OSA严重性级别的受试者兼容。