【论文阅读】Sleep apnea detection from asingle-lead ECG signal with automaticfeature-extraction through a

论文阅读:Sleep apnea detection from asingle-lead ECG signal with automaticfeature-extraction through a modifiedLeNet-5 convolutional neural network

一、摘要

卷积神经网络(CNN)是一种能够从训练数据中自动学习有效特征表示的深度神经网络,并已成功应用于许多领域。同时,大多数研究都没有考虑相邻段对SA检测的影响。因此,在这项研究中,我们提出了一种经过改进的LeNet-5卷积神经网络,该网络具有相邻的SA检测段。我们的实验结果表明,我们提出的方法可用于SA检测,并且与传统的机器学习方法相比,可以获得更好或相当的结果。大多数研究都没有考虑相邻片段对SA检测的影响。

二、数据

为了确保结果可靠,本研究使用了两个单独的数据集。下面提供了这两个数据集的简要说明。

第一个数据集是Philipps大学提供的PhysioNet呼吸暂停ECG数据集(Goldberger等,2000;Penzel等,2000)。它总共包含70条单导ECG信号记录(已发布集:35条记录,保留集:35条记录),这些记录以100 Hz采样,范围介于401和587分钟之间。对于每个1分钟的ECG信号记录段,数据集都会提供专家注释(如果在此分钟内发生呼吸暂停事件,则将其标记为SA;否则,将其标记为SA)。值得注意的是,在提供的注释文件中,呼吸不足和呼吸暂停之间没有差异,并且所有事件均为阻塞性或混合性(不包括中枢性)。此外,根据呼吸暂停-呼吸不足指数(AHI)值,这些记录分为A类,B类和C类。A级意味着录音每小时包含10个或更多SA片段(AHI ≥10),并且整个记录至少有100个SA段。B级表示该记录每小时包含五个或更多SA片段(AHI≥5 ),整个记录包含五个至99个SA片段。C级(或正常)表示每小时录制的SA少于5段(AHI <5)。

UCD数据集
UCD数据集是第二个数据集,由都柏林大学收集,可以从PhysioNet网站(https://physionet.org/physiobank/database/ucddb/)。该数据集记录了25位(4位女性和21位男性)可疑睡眠呼吸障碍患者的完整夜间PSG记录,每位患者都包含5.9至7.7小时的ECG信号,并标明了每次呼吸暂停/呼吸不足事件的开始时间和持续时间。考虑到该研究主要在1分钟ECG信号片段上执行SA检测,因此我们将连续ECG数据转换为1分钟间隔,该间隔与正常和呼吸暂停事件的注释相关。根据呼吸暂停的定义,一个事件应持续至少10s。但是,持续10s的呼吸暂停事件可能会在两个相邻的分钟内被分开,每个呼吸暂停事件的发生时间都更短(Mostafa,Morgado-Dias和Ravelo-García,2018年; Xie和Minn,2012年)。如果呼吸暂停或呼吸不足持续5秒钟或更长时间,则该分钟被视为呼吸暂停。此外,每项记录根据呼吸暂停-呼吸不足指数(AHI)值分为A级,B级或C级。

三、方法

预处理
在这项研究中开发了一种自动从RR间隔和幅度中提取特征的方法,并且需要一种预处理方案来获得RR间隔和幅度。相邻段信息对于每段SA检测,标记段及其周围的±2段都有帮助提取全部心电图信号(总共1分钟),以进行处理。我们首先使用汉密尔顿算法(Hamilton,2002)以找到R峰值,然后使用R峰值的位置来计算RR间隔(R峰值之间的距离)并提取R峰值的值(幅度)。考虑到提取的RR间隔具有一些生理上无法解释的点,因此采用Chen,Zhang&Song(2015)提出的中值滤波器。由于所获得的RR间隔和幅度不等于我们建议的方法所要求的时间间隔,因此进一步采用三次插值,并获得了5分钟内RR间隔的900点和幅度的900点。详细的预处理方案如图1所示。
在这里插入图片描述

在本研究中,整个提取了ECG信号的标记片段及其周围的±2个片段(总共5个1分钟片段)以进行处理。

对LeNet-5进行了如下调整:(1)使用一维卷积运算而不是二维卷积运算来进行特征提取(Kiranyaz,Ince&Gabbouj,2015); (2)在卷积层和全连接层之间增加一个辍学层,以避免过度拟合(Srivastava等,2014);(3)仅保留一层全连接层以降低网络复杂性(Ma等,2018); (4)修改卷积层步幅的大小和完全连接的层节点的数量。我们改良的LeNet-5的架构和细节如图2和表1所示。, 分别。与标准LeNet-5相比,我们改良的LeNet-5的所有卷积层步幅都更改为2,并且特征图的数量逐层增加。特别是,在卷积层和完全连接的层之间添加了丢失率为0.8的丢失层,并且针对我们的二进制分类问题,输出层节点的数量从10个减少到2个。
在这里插入图片描述

四、结果

细分SA检测
由下式给出ECG段(分钟按分钟)准确地预测SA的存在是在这一领域关键的,因为它提供了一种用于疑似SA患者的诊断的坚实基础。因此,我们将提出的方法与传统的机器学习方法进行了逐段SA检测。如表3所示,使用了保留集的整体性能,包括其特异性,敏感性,准确性和AUC 。从表3可以看出,我们的改良型LeNet-5具有自动特征提取功能,在所有测量中均表现良好,特异性为90.3%,灵敏度为83.1%,准确度为87.6%,AUC为0.950。与有第二高的精度SVM相比,综合性能较好,分别为6.0%,6.2%,6.2%和0.063。它也可以从结果可知KNN有五种方法中最低的预测精度,可能是因为从ECG信号中提取的特征进行了更小的空间相关的并且是不适合本场景中,类似于文献的调查结果看出(夏尔马& Sharma,2016年)。总之,在每个段SA检测,我们提出的LeNet-5具有自动特征提取进行比常用功能的工程方法更好。
在这里插入图片描述
按记录分类
一条记录由多个一分钟的ECG片段组成,每个记录的分类是指这些一分钟的ECG片段的整体SA诊断,这与每段SA检测不同。在临床上,AHI用于区分SA与正常录音。具体地,如果记录的AHI大于5,则诊断为SA;否则,将其诊断为SA。否则被认为是正常的。记录AHI使用每段SA检测结果计算得出,定义如下:
在这里插入图片描述

其中T表示一分钟ECG分段信号的数量,T / 60是整个记录的小时。因此,此处采用AHI来诊断记录SA,并针对如表4所列的保留集计算上述测量的准确性,灵敏度,特异性和AUC 。应当注意,由PhysioNet Apnea-ECG数据集提供的保留集只有35条记录,这可能导致低精度的逐段方法显示出更好的逐记录性能。通过遵循先前的研究(Sharma&Sharma,2016 ; Song et al。,2016),实验确定的AHI与实际AHI之间的相关值还采用了确保比较的可靠性。如表4所示,与SVM,LR,KNN和MLP相比,我们的改良LeNet-5的准确度为97.1%,灵敏度为100%,特异性为91.7%,AUC为0.996,在每次记录分类中表现更好。我们改良的LeNet-5的相关值进一步证实了这一结果,与第二高的SVM方法相比,该结果增加了0.091。
在这里插入图片描述

五、讨论

在这项研究中,我们开发了一种基于改进的LeNet-5和相邻ECG段的SA检测方法。实验结果表明,本文提出的方法可用于SA检测,并且其性能优于传统的机器学习方法和现有工作。由于临床应用对精度的要求很高,我们提出的方法的进一步改进将加速临床实践中基于ECG的SA检测设备的开发。此外,由于仅使用单导联ECG信号,因此我们提出的方法还可以用于开发可穿戴设备用于家庭医疗保健服务的SA检测。但是,我们提出的方法有一些局限性。由于Apnea-ECG数据集被标记为1分钟的分段,呼吸暂停/呼吸不足事件可能发生在两个1分钟的片段中间,而1分钟的片段可能包含一个以上的呼吸暂停/呼吸不足事件。此外,数据集不会在提供的注释文件中单独标记呼吸不足和呼吸暂停事件,并且所有事件都是阻塞性事件或混合性事件(不包括中心事件)。这可能意味着我们提出的方法无法区分呼吸不足和呼吸暂停,也无法检测到中枢事件。在未来的研究中,我们将包括其他数据集来解决上述问题

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值