一个简单的pytorch执行例子

本文通过一个简单的PyTorch代码示例,介绍了如何使用PyTorch创建张量并进行基本操作,包括张量初始化、加法运算及梯度计算,适合初学者快速了解PyTorch。
摘要由CSDN通过智能技术生成
#导入所需要的包
import torch
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.autograd import Variable
 
#定义超参数
input_size = 1
output_size = 1
num_epochs = 100
learning_rate = 0.001
 
#数据集
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
                    [9.779], [6.182], [7.59], [2.167], [7.042],
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
 
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
                    [3.366], [2.596], [2.53], [1.221], [2.827],
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
#定义线性模型
class LinearRegression(nn.Module):
    def __init__(self,input_size,output_size):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(input_size,output_size)
 
    def forward(self,x):
        out = self.linear(x)
 
        return out
 
model = LinearRegression(input_size,output_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值