#导入所需要的包
import torch
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.autograd import Variable
#定义超参数
input_size = 1
output_size = 1
num_epochs = 100
learning_rate = 0.001
#数据集
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
#定义线性模型
class LinearRegression(nn.Module):
def __init__(self,input_size,output_size):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(input_size,output_size)
def forward(self,x):
out = self.linear(x)
return out
model = LinearRegression(input_size,output_
一个简单的pytorch执行例子
最新推荐文章于 2022-09-22 12:22:38 发布
本文通过一个简单的PyTorch代码示例,介绍了如何使用PyTorch创建张量并进行基本操作,包括张量初始化、加法运算及梯度计算,适合初学者快速了解PyTorch。
摘要由CSDN通过智能技术生成