分解质因数
描述
任何一个整数都可以分解为几个质数的乘积,例如12=2*2*3,2和3不仅是12的因子,同时也都是质数。所以2和3就是12的质因子。将12完全分解为质因子的乘积,就称为分解质因数。
现在问题来了,给定任意一个正整数,请你将它分解质因数,并按照要求的格式输出。
输入格式
一行一个正整数。
数据范围:
保证数据在32位整数范围内。
保证非1。
输出格式
一行一个分解后的结果,格式请参照样例输出。
输入样例
12
输出样例
12=2*2*3
#include<iostream>
#include<cmath>
using namespace std;
int i;
void fenjie(int m){
for(i=2;i<=m;i++){
if(m%i==0){
if(m==i){
cout<<i<<endl;
return ;
}else{
cout<<i<<"*";
fenjie(m/i);
return ;
}
}
}
}
int n;
int main(){
cin>>n;
fenjie(n);
return 0;
}
分解质因数
最新推荐文章于 2023-05-29 17:59:40 发布