划水的题解

题目:

支持gzx20210226
支持以太以北
(不要忘记三连+评论)

答案:

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int ans[11];
void check()
{
	int a[6];
	memset(a,0,sizeof(a));
	for(int i=1;i<=10;i++)
	{
		for(int j=1;j<=5;j++)
		if(ans[i]==j) a[j]++;
	}
	
 
	//1
	int cnt=0,pos;
	for(int i=1;i<=10;i++)
	if(ans[i]==2) {pos=i;break;}
	if(pos!=ans[1]+1) return ;
	
	
	//2
	cnt=0;
	for(int i=1;i<10;i++)
	{
		if(ans[i]==ans[i+1])
		cnt++,pos=i;
	}
	if(cnt>1||pos!=ans[2]+1) return ;
	
 
	//3
	int ch[6]={0,1,2,4,7,6};
	if(ans[ch[ans[3]]]!=ans[3]) return ;
	
	
	//4
	if(a[1]!=ans[4]-1) return ;
	
	
	//5
	ch[1]=10;ch[2]=9;ch[3]=8;ch[4]=7;ch[5]=6;
	if(ans[ch[ans[5]]]!=ans[5]) return ;
	
	
	//6
	if(ans[6]==5)
	{
		for(int i=2;i<=5;i++)
		if(a[1]==a[i]) return ;
	}
	else if(a[1]!=a[ans[6]]) return ;
 
 
	//7
	if(abs(ans[7]-ans[8])!=5-ans[7]) return ;
 
 
	//8
	if(a[1]+a[5]!=ans[8]+1) return ;
	
	
	//9
	int num=a[2]+a[3]+a[4];
	if(ans[9]==1) if(num!=2&&num!=3&&num!=5&&num!=7) return ;
	if(ans[9]==2) if(num!=1&&num!=2&&num!=6) return ;
	if(ans[9]==3) if(num!=1&&num!=4&&num!=9) return ;
	if(ans[9]==4) if(num!=1&&num!=8) return ;
	if(ans[9]==5) if(num%5!=0) return ;
	
	for(int i=1;i<=10;i++)
	printf("%c ",char(ans[i]+96));
	printf("\n");
	exit(0);
}
void dfs(int pos)
{
	if(pos==0)
	{
		check();
		return ;
	}
	for(int i=1;i<=5;i++)
	{
		ans[pos]=i;
		dfs(pos-1);
	}
}
int main()
{
	dfs(10);
 	return 0;
}
/*3 4 5 2 5 5 4 3 2 1 */
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
06-01
这道题是一道典型的费用限制最短路题目,可以使用 Dijkstra 算法或者 SPFA 算法来解决。 具体思路如下: 1. 首先,我们需要读入输入数据。输入数据中包含了道路的数量、起点和终点,以及每条道路的起点、终点、长度和限制费用。 2. 接着,我们需要使用邻接表或邻接矩阵来存储图的信息。对于每条道路,我们可以将其起点和终点作为一个有向边的起点和终点,长度作为边权,限制费用作为边权的上界。 3. 然后,我们可以使用 Dijkstra 算法或 SPFA 算法求解从起点到终点的最短路径。在这个过中,我们需要记录到每个点的最小费用和最小长度,以及更新每条边的最小费用和最小长度。 4. 最后,我们输出从起点到终点的最短路径长度即可。 需要注意的是,在使用 Dijkstra 算法或 SPFA 算法时,需要对每个点的最小费用和最小长度进行松弛操作。具体来说,当我们从一个点 u 经过一条边 (u,v) 到达另一个点 v 时,如果新的费用和长度比原来的小,则需要更新到达 v 的最小费用和最小长度,并将 v 加入到优先队列(Dijkstra 算法)或队列(SPFA 算法)中。 此外,还需要注意处理边权为 0 或负数的情况,以及处理无法到达终点的情况。 代码实现可以参考以下样例代码: ```c++ #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN = 1005, MAXM = 20005, INF = 0x3f3f3f3f; int n, m, s, t, cnt; int head[MAXN], dis[MAXN], vis[MAXN]; struct Edge { int v, w, c, nxt; } e[MAXM]; void addEdge(int u, int v, int w, int c) { e[++cnt].v = v, e[cnt].w = w, e[cnt].c = c, e[cnt].nxt = head[u], head[u] = cnt; } void dijkstra() { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; q.push(make_pair(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].v, w = e[i].w, c = e[i].c; if (dis[u] + w < dis[v] && c >= dis[u] + w) { dis[v] = dis[u] + w; q.push(make_pair(dis[v], v)); } } } } int main() { memset(head, -1, sizeof(head)); scanf("%d %d %d %d", &n, &m, &s, &t); for (int i = 1; i <= m; i++) { int u, v, w, c; scanf("%d %d %d %d", &u, &v, &w, &c); addEdge(u, v, w, c); addEdge(v, u, w, c); } dijkstra(); if (dis[t] == INF) printf("-1\n"); else printf("%d\n", dis[t]); return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值