牛客刷题——连续子数组最大和

本文通过一道题目介绍了如何使用动态规划求解连续子数组的最大和问题。题目描述了一个包含N个元素的数组,目标是找到连续子数组的最大和。分析中提到,可以避免O(n^2)的时间复杂度,转而采用动态规划的方法,通过dp数组记录以每个元素结尾的子数组最大和,从而得到最优解。
摘要由CSDN通过智能技术生成

连续子数组最大和

题目链接:连续子数组最大和

题目描述

描述
一个数组有 N 个元素,求连续子数组的最大和。 例如:[-1,2,1],和最大的连续子数组为[2,1],其和为 3
输入描述:
输入为两行。 第一行一个整数n(1 <= n <= 100000),表示一共有n个元素 第二行为n个数,即每个元素,每个整数都在32位int范围内。以空格分隔。
输出描述:
所有连续子数组中和最大的值。
在这里插入图片描述

题目分析

这里可以使用遍历的方式找出最大连续子数组的和,但是时间复杂度是On2,可以换一种动态规划的方式来解决这个问题。
可以设置dp为以i结尾的子数组最大和。这里dp[i]存放的是最大值,也就是说dp[i]有两种情况:dp[i-1]+arr[i]或者直接dp[i]=arr[i]当中的最大值

代码实现

#include<iostream>
#include<vector>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值