DFS:
思想:一直往深处走,直到找到解或者走不下去为止;
使用栈保存未被检测的结点。结点按照深度优先的次序被访问并依次被压入栈中,并以相反的次序出栈进行新的检测。类似于树的先根遍历。例如:走迷宫,你没有办法用分身术来站在每个走过的位置,不撞南山不回头。
使用DFS解决问题时最先想到的应该是递归和栈(Stack)
DFS是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而B节点又是A的一个邻近节点,则DFS访问A节点后再访问B节点,如果B节点有未访问的邻近节点的话将继续访问其邻近节点,否则继续访问A的未访问邻近节点,当所有从A节点出去的路径都访问完之后,继续递归访问除A以外未被访问的邻近节点。
BFS:
使用队列保存未被检测的节点,结点按照宽度优先的次序被访问和进出队列,类似于树的按层次遍历的过程,例如:你的眼镜掉在地上,你趴在地板上找,你总是先摸你最接近你的地方,如果没有,你再摸远一点的地方。
如图:
可以看出是一层一层的遍历,在使用BFS解决问题的时候最先想到的方式是队列(Queue,FIFO)
其主要思想是从起始点开始,将其邻近的所有顶点都加到一个队列(FIFO)中去,然后标记下这些顶点离起始顶点的距离为1.最后将起始顶点标记为已访问,今后就不会再访问。然后再从队列中取出最先进队的顶点A,也取出其周边邻近节点,加入队列末尾,最后离开这个顶点A。依次下去,直到队列为空为止。从上面描述的过程我们知道每个顶点被访问的次数最多一次(已访问的节点不会再访问)
例题:钥匙和房间
来源于https://leetcode-cn.com/problems/keys-and-rooms/solution/yao-chi-he-fang-jian-by-leetcode-solution/
有 N 个房间,开始时你位于 0 号房间。每个房间有不同的号码:0,1,2,…,N-1,并且房间里可能有一些钥匙能使你进入下一个房间。
在形式上,对于每个房间 i 都有一个钥匙列表 rooms[i],每个钥匙 rooms[i][j] 由 [0,1,…,N-1] 中的一个整数表示,其中 N = rooms.length。 钥匙 rooms[i][j] = v 可以打开编号为 v 的房间。
最初,除 0 号房间外的其余所有房间都被锁住。
你可以自由地在房间之间来回走动。
如果能进入每个房间返回 true,否则返回 false。
示例 1:
输入: [[1],[2],[3],[]]
输出: true
解释:
我们从 0 号房间开始,拿到钥匙 1。
之后我们去 1 号房间,拿到钥匙 2。
然后我们去 2 号房间,拿到钥匙 3。
最后我们去了 3 号房间。
由于我们能够进入每个房间,我们返回 true。
示例 2:
输入:[[1,3],[3,0,1],[2],[0]]
输出:false
解释:我们不能进入 2 号房间。
提示:
1 <= rooms.length <= 1000
0 <= rooms[i].length <= 1000
所有房间中的钥匙数量总计不超过 3000
深度搜索解法:
遍历整张图,统计可以到达的节点个数,并利用数组vis标记当前节点是否访问过,以防止重复访问。
class Solution {
boolean[] vis;
int num;
public boolean canVisitAllRooms(List<List<Integer>> rooms) {
int n = rooms.size();
num = 0;
vis = new boolean[n];
dfs(rooms, 0);
return num == n;
}
public void dfs(List<List<Integer>> rooms, int x) {
vis[x] = true;
num++;
for (int it : rooms.get(x)) {
if (!vis[it]) {
dfs(rooms, it);
}
}
}
}
广度优先搜索解法:
遍历整张图,统计可以到达的节点个数,并利用数组 \textit{vis}vis 标记当前节点是否访问过,以防止重复访问
class Solution {
public boolean canVisitAllRooms(List<List<Integer>> rooms) {
int n = rooms.size(), num = 0;
boolean[] vis = new boolean[n];
Queue<Integer> que = new LinkedList<Integer>();
vis[0] = true;
que.offer(0);
while (!que.isEmpty()) {
int x = que.poll();
num++;
for (int it : rooms.get(x)) {
if (!vis[it]) {
vis[it] = true;
que.offer(it);
}
}
}
return num == n;
}
}
que.offer(it);
}
}
}
return num == n;
}
}