【蓝桥杯】数字三角形-DP动态规划

文章介绍了如何使用动态规划解决一个涉及最大路径值的问题。定义了F(i,j)为从源点(1,1)到点(i,j)的最大值,并给出状态转移方程F(i,j)=max(F(i-1,j-1),F(i-1,j))+val(i,j)。通过二维数组bes存储中间结果,最终找到路径的最大值。
摘要由CSDN通过智能技术生成

题目:

解题思路:
 

可以定义函数F(i,j)是源点(1,1)到点(i,j)的最大值,val(i,j)是点(i,j)的数值;

先求出状态转移方程

F(i,j)= max((i-1,j-1),(i-1,j))

题解代码:

根据状态转移方程敲出代码即可;

//数字三角形--DP 
#include <bits/stdc++.h>
using namespace std;
const int maxx = 100; 
int val[maxx+5][maxx+5];
int bes[maxx+5][maxx+5];
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;++i){
		for(int j=1;j<=i;++j){
			cin>>val[i][j];   //读取数据
		}
	}
	for(int i=1;i<=n;++i){
		for(int j=1;j<=i;++j){
			bes[i][j]=max(bes[i-1][j],bes[i-1][j-1])+val[i][j];
		}
	}
	int maxxx = -1;
	for(int i=1;i<=n;++i){
		if(bes[n][i]>maxxx)
			maxxx = bes[n][i];
	}
	cout<<maxxx<<endl;
	return 0;
}

最关键的是---状态转移方程

我就是喜欢用二维DP数组,容易理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hskwcy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值