Embedding和Rerank模型类模板

1. 模型介绍

介绍见链接:Embedding和Rerank模型介绍

2. Embedding模型模板

from transformers import AutoModel, AutoTokenizer
import torch

class EmbeddingModel:
    def __init__(self, model_name, device='cuda'):
        """
        Initializes the embedding model with the specified model name and device.
        """
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)
        self.device = device
        self.model.to(self.device)

    def get_embeddings(self, sentences):
        """
        Processes a list of sentences to produce their embeddings.
        """
        inputs = self.tokenizer(sentences, padding=True, truncation=True, max_length=512, return_tensors="pt")
        inputs_on_device = {k: v.to(self.device) for k, v in inputs.items()}
        outputs = self.model(**inputs_on_device, return_dict=True)
        embeddings = outputs.last_hidden_state[:, 0]  # cls token
        normalized_embeddings = embeddings / embeddings.norm(dim=1, keepdim=True)
        return normalized_embeddings

# Usage example:
model_name = 'maidalun1020/bce-embedding-base_v1'
sentences = ['sentence_0', 'sentence_1']
embedding_model = EmbeddingModel(model_name, device='cuda' if torch.cuda.is_available() else 'cpu')
embeddings = embedding_model.get_embeddings(sentences)
print(embeddings)

说明

  1. 初始化:在构造函数中初始化分词器和模型,并将模型转移到指定的计算设备(如 GPU 或 CPU)。
  2. 获取嵌入:定义了一个方法 get_embeddings,它接受一系列句子,将它们转换为嵌入表示。
  3. 标准化:最后,嵌入通过其L2范数进行标准化,以改善某些下游任务的性能。

3. Rerank模型模板

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

class RerankerModel:
    def __init__(self, model_name, device='cuda'):
        """
        Initializes the reranker model with the specified model name and device.
        """
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
        self.device = device if torch.cuda.is_available() else 'cpu'
        self.model.to(self.device)

    def score_pairs(self, sentence_pairs):
        """
        Processes a list of sentence pairs to produce their scores.
        """
        inputs = self.tokenizer(sentence_pairs, padding=True, truncation=True, max_length=512, return_tensors="pt")
        inputs_on_device = {k: v.to(self.device) for k, v in inputs.items()}
        logits = self.model(**inputs_on_device, return_dict=True).logits.view(-1,).float()
        scores = torch.sigmoid(logits)
        return scores

# Usage example:
model_name = 'maidalun1020/bce-reranker-base_v1'
sentence_pairs = [
    ("The weather is nice today.", "It's a beautiful day."), 
    ("He won the race.", "He came first in the competition.")
]
reranker_model = RerankerModel(model_name, device='cuda')
scores = reranker_model.score_pairs(sentence_pairs)
print(scores)

说明

  1. 初始化:在构造函数中,加载了分词器和模型,并将模型转移到指定的设备上(GPU 或 CPU)。
  2. 得分计算:定义了 score_pairs 方法来接受句子对,将其转换为模型可接受的格式,并计算得分。这里使用 sigmoid 函数是因为通常在二元分类任务中用来将 logits 转换为概率。
  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
词袋模型embedding是自然语言处理中两种不同的表示文本的方法。 词袋模型是一种简单的表示方法,它将文本视为一个袋子,将文本中的所有词汇都放入其中,并统计每个词汇的出现次数或者出现与否。在词袋模型中,每个词汇都是独立的,不考虑其词法和语序的问题。因此,词袋模型只关注词汇的数量和频率,而不关注词汇之间的关系。 而embedding是一种更高级的文本表示方法,它通过学习将文本中的词汇转换为连续向量表示。这些向量被设计成能够捕捉词汇之间的语义和语法关系。通过embedding,相似的词汇在向量空间中会更加接近,可以进行词汇的比较和计算。embedding模型的训练输入一般是上下文相关的词对应的词向量,而输出是特定词汇的词向量。 因此,词袋模型更加简单,只考虑词汇的数量和出现频率,而embedding则通过学习将词汇转换为连续向量,能够更好地捕捉词汇之间的语义关系。最终的选择要根据具体的任务和需求来决定。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [one-hot(独热)、bag of word(词袋)、word-Embedding(词嵌入)浅析](https://blog.csdn.net/xixiaoyaoww/article/details/105459590)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍](https://blog.csdn.net/qq_43350003/article/details/105392702)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写bug如流水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值