嵌入模型(embedding )和重排序模型(rerank)与bert的关系

本文探讨了嵌入模型,特别是预训练的词嵌入、上下文嵌入模型(如ELMo和BERT)、自定义和迁移学习模型在NLP中的作用。重点介绍了如何利用BERT进行rerank模型的构建,以及如何通过微调增强搜索结果的排序性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

embedding model 及rerank model 的个人理解
当你登录到huggingface,你在查询embedding model 时,一定会发现
bge-base-en-v1.5
图片中的红框,是一些基础的标签。
在查询rerank model 时,PEG
一个显而易见的bert model。
嵌入模型是自然语言处理 (NLP) 和机器学习任务的关键组成部分。这些模型负责将文本数据转换为数值向量,通常在高维空间中,其中每个维度代表文本的特定特征或方面。嵌入模型的目标是捕获单词或文档之间的语义关系,使算法能够更有效地理解和处理文本数据。
嵌入模型有多种来源:
预训练的词嵌入:这些嵌入使用 Word2Vec、GloVe 或 FastText 等无监督学习技术在大型文本数据集上进行训练。预训练的词嵌入根据训练数据中单词的共现模式捕获单词之间的语义关系。
上下文嵌入模型:与为每个单词分配固定向量表示的传统单词嵌入不同,ELMo(来自语言模型的嵌入)和 BERT(来自 Transformers 的双向编码器表示)等上下文嵌入模型会生成上下文感知嵌入。这些模型考虑周围的单词及其在句子中的顺序,以生成捕获含义和上下文细微差别的嵌入。

自定义嵌入模型:组织或研究人员还可以在特定领域或专有数据集上训练其嵌入模型。这些自定义嵌入模型专为捕获特定领域的语义而定制,并且通常针对特定任务进行微调以提高性能。
迁移学习模型&#x

### Xinference 模型重排方法及实现 #### 使用场景背景介绍 Xinference 平台不仅支持大型语言模型(LLM),也能够部署嵌入Embedding重新排名(Re-Ranking, ReRank模型,这对于构建企业级检索增强生成(RAG)系统至关重要[^2]。 #### 实现原理概述 在两阶段检索架构中,第一阶段通常采用快速过滤方式获取候选文档集合;第二阶段则利用更复杂的模型对这些初步筛选出来的结果做进一步精炼处理——即所谓的“重排”。此过程旨在提高最终返回给用户的条目质量。对于像 Xinference 这样的平台来说,在这个过程中发挥着重要作用的是其内置的支持多种类型AI组件的能力以及灵活配置选项。 #### 具体操作指南 为了完成基于 Xinference 的模型重排工作流: - **准备环境** 确认已安装并设置好最新版本的 `xinference` 软件包及其依赖项。 - **加载预训练好的 Embedding Ranking Model** 下载或自定义适合业务需求的向量化工具(如 BERT 变种)作为 embedding provider,并挑选一个性能优越的 ranking model 来优化排序效果。 ```python from xinference import load_model embedding_model = load_model('path_to_embedding_model') ranking_model = load_model('path_to_ranking_model') ``` - **执行查询转换相似度计算** 对输入文本进行编码得到特征表示形式,随后依据该表征其他已有数据之间的距离来决定哪些项目应该被纳入考虑范围之内。 ```python query_vector = embedding_model.encode(query_text) def calculate_similarity(item): item_vector = embedding_model.encode(item['content']) return cosine_similarity([query_vector], [item_vector])[0][0] items_with_scores = [(item, calculate_similarity(item)) for item in items_list] sorted_items_by_sim = sorted(items_with_scores, key=lambda x: x[1], reverse=True)[:top_k] ``` - **应用 Ranker 提升结果准确性** 将上述获得的结果集传递给 ranker 函数,从而让后者根据更加细致的标准调整顺序,确保最有可能满足用户意图的信息位于前列位置。 ```python final_results = ranking_model.rank(sorted_items_by_sim) ``` 以上就是使用 Xinference 执行模型重排的一般流程描述。值得注意的是实际开发时可能还需要针对具体应用场景做出相应调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值