图神经网络笔记(三)

本文主要探讨了图神经网络中图采样的必要性,由于节点间依赖导致的计算量爆炸问题,以及两种图采样算法——GraphSAGE和PinSAGE。GraphSAGE通过邻居采样和聚合来减少计算量,而PinSAGE利用随机游走选择频率高的节点作为虚拟邻居,有效获取远距离信息。
摘要由CSDN通过智能技术生成

图采样

一、为什么要图采样

在传统的深度学习中,单batch为若干个样本,且样本之间无依赖,多层样本计算量固定。
在这里插入图片描述
但是在图神经网络中,单batch为若干个节点,且节点之间相互依赖,多层节点计算量爆炸。(每层计算都要聚合当前节点的邻居节点信息,层数增加以后需要计算的节点回随着层数的增加呈指数趋势增长)
在这里插入图片描述

二、什么是图采样

对图进行子图采样而不是随机采样。
在这里插入图片描述
(一个节点的标识由它的邻居决定)

三、图采样算法详解

1.GraphSAGE

1)邻居采样
优点:
极大的减少训练计算量
允许泛化到新连接关系
2)邻居聚合
3)节点预测

Q:采样时只能选取真实id邻居节点吗?(不一定,可以模拟邻居

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值