L1正则和L2正则

常用的惩罚项L1正则项和L2正则项

MSE + L1 ==> lasso 回归

MSE + L2 ==> Ridge 回归

L1正则项相当于求曼哈顿距离。

L2正则项相当于求欧氏距离L2范数的平方(两点之间连线)的平方。

 

from sklearn.linear_model import Ridge
# 使用交叉验证选择最优的岭回归正则化参数
from sklearn.linear_model import RidgeCV

#使用交叉验证选择最优的正则化参数
from sklearn.linear_model import LassoCV

Ridge()

# 参数介绍
alpha=1.0,
fit_intercept=True,
normalize="deprecated",
copy_X=True,
max_iter=None,
tol=1e-3,
solver="auto",
positive=False,
random_state=None,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值