常用的惩罚项L1正则项和L2正则项
MSE + L1 ==> lasso 回归
MSE + L2 ==> Ridge 回归
L1正则项相当于求曼哈顿距离。
L2正则项相当于求欧氏距离L2范数的平方(两点之间连线)的平方。
from sklearn.linear_model import Ridge
# 使用交叉验证选择最优的岭回归正则化参数
from sklearn.linear_model import RidgeCV
#使用交叉验证选择最优的正则化参数
from sklearn.linear_model import LassoCV
Ridge()
# 参数介绍
alpha=1.0,
fit_intercept=True,
normalize="deprecated",
copy_X=True,
max_iter=None,
tol=1e-3,
solver="auto",
positive=False,
random_state=None,