9、上下文感知工件集合中的协作与智能行为实现

上下文感知工件集合中的协作与智能行为实现

在当今科技飞速发展的时代,普适计算(UbiComp)正逐渐改变我们的生活。普适计算环境的一个重要特征是物理空间和数字空间的融合,日常物品通过嵌入信息通信技术(ICT)组件,如传感器、执行器、处理器、内存和无线通信模块等,具备了接收、存储、处理和传输信息的能力,这些物品被称为“工件”。

1. 引言

单个工件的能力可能有限,但当它们相互连接形成组合时,就能展现出更广泛的行为。这种组合可以由用户或其他管理机构进行重新配置,其集体行为既不是静态的也不是随机的,而是能够不断演变产生新的行为。这是因为工件具备感知和解释环境的能力,从而实现智能行为。

研究的目标是探讨如何让工件集合(或称为环境生态,用于建模普适计算应用的隐喻)协同工作,提供超越各部分之和的功能。实现这一目标的关键在于提供适当的抽象和一种新的可组合性,让用户能够通过工件的数字自我感知其可连接能力,从而实现工件之间的连接和应用组合。

1.1 激励场景

为了研究上述研究方向,我们定义了一个示例场景。早上7:30,布鲁塞尔的行政官员凯瑟琳还在睡觉,闹钟响起,卧室和厨房的百叶窗自动打开,MP3播放器播放她喜欢的随机歌曲。她起床后,咖啡机、烤面包机自动启动,浴缸加热器开启。准备早餐时,她想换菜单,通过冰箱屏幕选择了喜欢的中国食谱,系统自动检查供应清单,发现缺少食材后自动在最近超市的网上订购服务中下单,并通过短信通知管家取货。离开家时,智能植物提醒她浇水,根据她的位置上下文提供相应通知。之后她乘坐提前由智能日历和出租车中心预约服务叫来的出租车离开。下午,她在智能办公室读书,相关物品通过传感器感知她的意图并协作提供服务,如打开台灯。阅读时,她收到朋友邀请散步

内容概要:本文主要介绍了一项关于四足机器人轨迹优化四足机器人轨迹优化研究(Matlab代码实现)的研究,重点在于利用Matlab代码实现轨迹优化算法。通过对四足机器人运动学动力学模型的建立,结合优化算法(如非线性模型预测控制、智能优化算法等),实现机器人在复杂地形下的稳定行走高效路径规划。文中详细阐述了优化目标的设计,包括步态稳定性、能耗最小化、关节力矩平滑性等,并通过Matlab仿真验证了所提方法的有效性和鲁棒性。此外,文档还列举了多个相关研究方向和技术应用,展示了该领域其他智能控制、路径规划及多传感器融合技术的紧密联系。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能机器人、运动控制、路径规划等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于四足机器人步态生成轨迹优化算法的开发仿真验证;②为复杂环境下移动机器人运动控制提供解决方案;③支持科研教学中对非线性优化、模型预测控制等高级控制策略的学习实践。; 阅读建议:建议读者结合提供的Matlab代码进行实际操作,深入理解轨迹优化的数学建模过程求解方法,同时可参考文中提到的协同路径规划、多传感器融合等扩展内容,拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值