常见图像处理技术基础与前沿概览
1. 图像基础认知
1.1 图像基础要点
图像是极为常见的概念,一般被视为场景的视觉呈现。从严格意义上讲,它是通过不同观测系统对客观世界进行观测而得到的,能直接或间接作用于人类眼睛并产生视觉感知的实体。人类从外界获取的约 75% 的信息都来自视觉系统,也就是图像,其涵盖的范围十分广泛,像照片、绘图、动画、视频,甚至文档都可包含在内。
1.2 图像的表示与显示
1.2.1 图像与像素
客观世界是三维的,但从客观场景获取的图像通常是二维的。图像可以用二维数组 f(x, y) 来表示,其中 x 和 y 代表二维空间 XY 中坐标点的位置,f 表示某点 (x, y) 处属性 F 的图像值。例如,灰度图像中的 f 代表灰度值,通常对应客观场景的观测亮度;文本图像常为二值图像,f 只有两个值,分别对应文本和空白区域。图像在某点 (x, y) 也可能同时具有多个属性,此时可用向量 f 表示,如彩色图像在每个图像点有红、绿、蓝三个值,可记为 [fr(x, y), fg(x, y), fb(x, y)]。
以下是不同类型图像的表示示例:
| 图像类型 | 表示方式 |
| ---- | ---- |
| 灰度图像 | f(x, y)(f 为灰度值) |
| 文本图像 | f(x, y)(f 为二值:文本或空白) |
| 彩色图像 | [fr(x, y), fg(x, y), fb(x, y)] |
1.2.2 图像的矩阵和向量表示
图像的矩阵和向量表示为图像的处理和分析提供了便利。矩阵表示可以直观地展示
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



