机器学习 Regularized Logistic Regression 中 λ作用表现

Regularized Logistic Regression中的cost function 是:
cost function

偏导数为:
Θ0偏导
Θj偏导

我们的数据图像是这样的:
Data Visualization
下面我们来看不同的λ,经过matlab中fminunc函数优化后得到的Θ,画出的decision boundary是什么样的

λ=1:
λ=1

λ=0:
λ=0

λ=0.5:
λ=0.5

λ=2:
λ=2

λ=5:
λ=5

λ=10:
λ=10

λ=50:
λ=50

λ=175:
λ=175

在这之后就会越来越小,200已经看不见这个boundary了

λ=-10:
λ=-10

λ=-50:
λ=-50

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值